RUS  ENG
Full version
PEOPLE

Pobedrya Boris Efimovich

Publications in Math-Net.Ru

  1. Adequacy of a nonlinear theory of viscoelasticity

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 5,  65–69
  2. New constitutive relations in the nonlinear theory of viscoelasticity

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 5,  41–47
  3. Determination of material functions for the linear moment theory of viscoelasticity

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 5,  36–41
  4. Constitutive relations of the moment theory of elasticity

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 3,  56–58
  5. A scheme of experiments on creeping with allowance for evolution destruction

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 3,  65–67
  6. Static problem of the nonsymmetric elasticity theory for an isotropic medium

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 1,  54–59
  7. Dissipation of energy in the theory of viscoelasticity

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2003, no. 4,  35–46
  8. Static problem in stresses

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2003, no. 3,  61–67
  9. On fractals in mechanics

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 1,  40–44
  10. Models of continuum mechanics

    Fundam. Prikl. Mat., 3:1 (1997),  93–127
  11. Defining relations for deformational transversal anisotropy

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 6,  67–70
  12. One-dimensional models of the mechanics of a deformable body

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 5,  43–55
  13. Bending of a thin flexible plate

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 6,  33–37
  14. A source method for solving a problem in the theory of elasticity in stresses

    Dokl. Akad. Nauk SSSR, 305:3 (1989),  536–539
  15. Equilibrium of a plate and a tube made of a stratified composite material with viscoelastic components

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 6,  78–82
  16. Anisotropy in flow theory

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 6,  66–70
  17. Effective elastic moduli of a unidirectional fiber composite

    Dokl. Akad. Nauk SSSR, 275:3 (1984),  586–589
  18. Numerical solution of problems of the mechanics of a deformable solid inhomogeneous body

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 4,  78–85
  19. On the existence and uniqueness of the solution of a problem of elasticity theory at stresses

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 1,  50–51
  20. A new formulation of the problem in mechanics of a deformable solid body under stress

    Dokl. Akad. Nauk SSSR, 253:2 (1980),  295–297
  21. On the problem in stresses

    Dokl. Akad. Nauk SSSR, 240:3 (1978),  564–567
  22. Равновесие цилиндрической оболочки под действием внешнего давления при наличии насаженных с натягом упругих шпангоутов

    Issled. Teor. Plastin i Obolochek, 10 (1973),  204–210
  23. On a new method for the solution of some quasi-static problems in nonlinear continuum mechanics

    Dokl. Akad. Nauk SSSR, 197:2 (1971),  277–280
  24. Convergence of the “elastic” solution method in nonlinear viscoelasticity

    Dokl. Akad. Nauk SSSR, 195:2 (1970),  307–310
  25. On the solution of contact type problems of the linear theory of visco-elasticity

    Dokl. Akad. Nauk SSSR, 190:2 (1970),  297–300
  26. The stress-strain relation in nonlinear viscous elasticity

    Dokl. Akad. Nauk SSSR, 173:1 (1967),  62–63


© Steklov Math. Inst. of RAS, 2024