RUS  ENG
Full version
PEOPLE

Zhukova Alla Adol'fovna

Publications in Math-Net.Ru

  1. On an analogue of Gelfond's problem for Ostrowsky expansion

    Izv. RAN. Ser. Mat., 89:2 (2025),  25–44
  2. An analogue of Eminian's problem for the Fibonacci number system

    Chebyshevskii Sb., 23:2 (2022),  88–105
  3. On Gelfond-type problem for generalized Zeckendorf representations

    Chebyshevskii Sb., 22:2 (2021),  104–120
  4. On two relations characterizing the golden ratio

    Dal'nevost. Mat. Zh., 21:2 (2021),  194–202
  5. Rauzy substitution and local structure of torus tilings

    Chebyshevskii Sb., 20:4 (2019),  137–157
  6. $n$-crowns in toric tilings into bounded remander sets

    Chebyshevskii Sb., 20:3 (2019),  246–260
  7. Additive problem with $k$ numbers of a special form

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 166 (2019),  10–21
  8. Geometrization of numeration systems

    Chebyshevskii Sb., 18:4 (2017),  222–245
  9. Geometrization of the generalized Fibonacci numeration system with applications to number theory

    Chebyshevskii Sb., 17:2 (2016),  88–112
  10. On the distribution function of the remainder term on bounded remainder sets

    Chebyshevskii Sb., 17:1 (2016),  90–107
  11. Binary additive problem with numbers of special type

    Chebyshevskii Sb., 16:3 (2015),  246–275
  12. Geometrization of Fibonacci numeration system and its applications to number theory

    Algebra i Analiz, 25:6 (2013),  1–23
  13. Estimating the cardinality of a difference subset of the discrete multi-torus $\mathbb Z^n_3$

    Fundam. Prikl. Mat., 16:6 (2010),  23–32
  14. An asymptotic formula for the cardinality of a difference subset of the multidimensional torus $\mathbb{Z}_3^n$

    Chebyshevskii Sb., 10:1 (2009),  4–8
  15. On maximal set without parallelograms

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2009, no. 8(74),  5–14
  16. The Hardy–Littlewood problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 2,  41–49
  17. Additive problems with numbers having a given number of prime dividers from progressions

    Fundam. Prikl. Mat., 3:1 (1997),  163–170

  18. Aleksandr Aleksandrovich Yudin

    Chebyshevskii Sb., 10:1 (2009),  109–113


© Steklov Math. Inst. of RAS, 2025