RUS  ENG
Full version
PEOPLE

Bening Vladimir Evgen'evich

Publications in Math-Net.Ru

  1. On the behavior of extreme values in the case of Burr distribution

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2024, no. 3,  18–32
  2. On the asymptotic reserve behavior of the organization subjected to risk

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2023, no. 4,  25–42
  3. On the organizations' risk reserves comparison based on the deficiency concept

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2022, no. 3,  5–26
  4. On the asymptotic behavior of insurance company reserve

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 2,  35–48
  5. On the asymptotic expansions for the risk function and deficiencies of some statistical estimators based on the samples with random sizes

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2019, no. 2,  5–25
  6. On the power of criteria in the case of samples of random size

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2018, no. 4,  5–22
  7. On asymptotic behavior of quantiles deficiencies of the distributions of statistics based on the samples with random sizes

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2018, no. 3,  42–57
  8. An estimate of the distribution of the unknown parameters with a random number of independent observations

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2017, no. 3,  5–12
  9. Calculation of the asymptotic deficiency of some statistical procedures based on samples with random sizes

    Inform. Primen., 10:4 (2016),  34–45
  10. On the deficiency of sample mediane based on the sample with random size

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2016, no. 2,  5–30
  11. On deficiencies of some estimators based on samples of random size

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2015, no. 1,  5–14
  12. Independent component analysis for the inverse problem in the multidipole model of magnetoencephalogram’s sources

    Inform. Primen., 8:2 (2014),  77–85
  13. Asymptotic expansions for the distribution functions of statistics constructed from samples with random sizes

    Inform. Primen., 7:2 (2013),  75–83
  14. On bounds for the concentration functions of regular statistics constructed from samples with random sizes

    Inform. Primen., 7:1 (2013),  116–123
  15. Rate Of Convergence Of Random Sums Distribution To Nonsymmetric Laplace Distribution

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2013, no. 4,  39–45
  16. Upper Bounds For The Concentration Function Of Statistics Based On The Samples With Random Sizes

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2013, no. 3,  49–63
  17. Generalized Laplace distribution as a limit law for random sums and statistics constructed from samples with randomsizes

    Inform. Primen., 6:4 (2012),  34–39
  18. Estimates of the rate of convergence of the distributions of random sums to variance-gamma distributions

    Inform. Primen., 6:3 (2012),  69–73
  19. Estimates of the rate of convergence of the distributions of random sums to the skew Student distribution

    Sistemy i Sredstva Inform., 22:1 (2012),  132–141
  20. Rate of convergence of the distribution functions of the asumptotic normal statistics based on the samples of random size

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2012, no. 2,  53–65
  21. On one update for the limit formula of the normalized difference between asymptotically optimal tests

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2012, no. 1,  67–83
  22. An asymptotically optimal test for the number of components of a mixture of probability distributions

    Inform. Primen., 5:3 (2011),  4–16
  23. On asymptotic behavior of the powers of the tests for the case of Laplace distribution

    Inform. Primen., 4:2 (2010),  63–74
  24. Asymptotic expansion for the power of test based on sample median in the case of Laplace distribution

    Inform. Primen., 4:1 (2010),  18–23
  25. Use of methods of mathematical modeling at agrophysical assessment of soil cover

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2010, no. 16,  43–54
  26. On the power of the tests in the case of generalized Laplace distribution

    Inform. Primen., 3:3 (2009),  79–85
  27. Some statistical problems related to the Laplace distribution

    Inform. Primen., 2:2 (2008),  19–34
  28. Asymptotic expansions for the power of the criteria in the case of a Laplace distribution

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 10,  97–107
  29. About the power of asymptotically optimal test in the case of Laplace distribution

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 8,  5–23
  30. Estimates of the shift parameter of the Student's distribution with a small number of degrees of freedom

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2007, no. 7,  5–25
  31. On the asymptotic properties of some Bayesian tests

    Sistemy i Sredstva Inform., 2006, no. special issue,  309–323
  32. On powers of likelihood ratio tests constructed from samples with random sizes

    Sistemy i Sredstva Inform., 2006, no. special issue,  258–285
  33. An application of the method of mixtures of probability distributions to the analysis of expert estimates

    Sistemy i Sredstva Inform., 2006, no. special issue,  85–100
  34. On an application of the Student distribution in the theory of probability and mathematical statistics

    Teor. Veroyatnost. i Primenen., 49:3 (2004),  417–435
  35. Low-frequency structural plasma turbulence in the L-2M stellarator

    Pis'ma v Zh. Èksper. Teoret. Fiz., 78:8 (2003),  974–983
  36. Nonparametric estimation of the ruin probability for generalized risk processes

    Teor. Veroyatnost. i Primenen., 47:1 (2002),  3–20
  37. Turbulent transport processes in a plasma as a diffusion process with random time

    Pis'ma v Zh. Èksper. Teoret. Fiz., 73:3 (2001),  143–147
  38. Estimates for the rate of convergence under alternatives of some statistics

    Dokl. Akad. Nauk, 349:2 (1996),  151–152
  39. Asymptotic behavior of nonrandomly centered generalized Cox processes

    Fundam. Prikl. Mat., 2:4 (1996),  957–975
  40. An asymptotic expansion for the distribution of a statistic admitting a stochastic decomposition depending on a linear combination of order statistics, for close alternatives

    Dokl. Akad. Nauk SSSR, 251:1 (1980),  14–16
  41. An asymptotic expansion for the distribution of a statistic admitting a stochastic decomposition depending on a linear combination of order statistics

    Dokl. Akad. Nauk SSSR, 250:6 (1980),  1289–1292

  42. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2006, no. 1,  44–52
  43. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2005, no. 1,  40–49
  44. Поправки к статье “Асимптотическое разложение для распределения статистики, допускающей стохастическое разложение, зависящее от линейной комбинации порядковых статистик” (ДАН, 1980 г., т. 250, № 6)

    Dokl. Akad. Nauk SSSR, 261:3 (1981),  520


© Steklov Math. Inst. of RAS, 2025