RUS  ENG
Full version
PEOPLE

Rozovskii Leonid Victorovich

Publications in Math-Net.Ru

  1. On the complete convergence of moments in exact asymptotics under normal approximation

    Teor. Veroyatnost. i Primenen., 68:4 (2023),  769–778
  2. On the convergence rate in precise asymptotics

    Teor. Veroyatnost. i Primenen., 68:1 (2023),  57–74
  3. On complete convergence of moments of i.i.d.r.v. with finite variances

    Zap. Nauchn. Sem. POMI, 525 (2023),  109–121
  4. Large deviations of a sum of independent random variables with distributions with rapidly decreasing tails

    Teor. Veroyatnost. i Primenen., 67:3 (2022),  456–470
  5. On a complete moment convergence in precise asymptotics

    Zap. Nauchn. Sem. POMI, 515 (2022),  180–188
  6. Comparison of Arithmetic, Geometric, and Harmonic Means

    Mat. Zametki, 110:1 (2021),  110–118
  7. On the convergence rate in “the exact asymptotics” for random variables with a stable distribution

    Zap. Nauchn. Sem. POMI, 501 (2021),  259–275
  8. On large deviations of a sum of independent random variables with rapidly decreasing distribution tails

    Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020),  86–89
  9. Small deviation probabilities for sums of independent positive random variables

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:3 (2020),  435–452
  10. Some limit theorems for large deviations of sums of independent random variables with a common distribution function from the domain of normal attraction of a stable distribution

    Zap. Nauchn. Sem. POMI, 495 (2020),  250–266
  11. On integro-local CLT for sums of independent random vectors

    Teor. Veroyatnost. i Primenen., 64:4 (2019),  707–724
  12. Integro-local CLT for sums of independent nonlattice random vectors

    Teor. Veroyatnost. i Primenen., 64:1 (2019),  36–52
  13. On the asymptotic behavior of the convolution of distributions with regularly exponentially decreasing tails

    Zap. Nauchn. Sem. POMI, 486 (2019),  265–274
  14. On the exact asymptotics of small deviations of $L_2$-norm for some Gaussian random fields

    Teor. Veroyatnost. i Primenen., 63:3 (2018),  468–481
  15. Small deviation probabilities for a weighted sum of independent positive random variables with common distribution function that can decrease at zero fast enough

    Teor. Veroyatnost. i Primenen., 63:1 (2018),  191–202
  16. Small deviation probabilities of weighted sum of independent random variables with a common distribution having a power decrease in zero under minimal moment assumptions

    Teor. Veroyatnost. i Primenen., 62:3 (2017),  610–616
  17. On asymptotic expansions in the “interval” CLT for sums of independent random vectors

    Zap. Nauchn. Sem. POMI, 466 (2017),  273–288
  18. Small deviation probabilities for sum of independent positive random variables, which have a common distribution, decreasing at zero not faster than a power

    Zap. Nauchn. Sem. POMI, 454 (2016),  254–260
  19. Small deviation probabilities of weighted sums of independent positive random variables with a common distribution that decreases at zero not faster than a power

    Teor. Veroyatnost. i Primenen., 60:1 (2015),  178–186
  20. On relation of the growth rate between moments and semyinvariants of a higher order

    Zap. Nauchn. Sem. POMI, 442 (2015),  118–121
  21. Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II

    Teor. Veroyatnost. i Primenen., 59:1 (2014),  187–196
  22. Small deviation probabilities for weighted sum of independent random variables with a common distribution, decreasing at zero not faster than a power

    Zap. Nauchn. Sem. POMI, 431 (2014),  178–185
  23. Small deviations of series of independent nonnegative random variables with smooth weights

    Teor. Veroyatnost. i Primenen., 58:1 (2013),  133–151
  24. Small deviation probabilities for sums of independent positive random variables with distributions which are slowly varying at zero

    Zap. Nauchn. Sem. POMI, 412 (2013),  237–251
  25. On the convergence conditions of the generalized Spitzer series

    Teor. Veroyatnost. i Primenen., 57:4 (2012),  809–810
  26. Small deviation probabilities for sums of independent positive random variables, whose density has a power decay at zero

    Zap. Nauchn. Sem. POMI, 396 (2011),  195–203
  27. Small deviations of series of weighted positive random variables

    Zap. Nauchn. Sem. POMI, 384 (2010),  212–224
  28. Probabilities of small deviations of the maximum of partial sums

    Teor. Veroyatnost. i Primenen., 54:4 (2009),  794–801
  29. Small deviations of the maximal element of a sequence of independent variables with smooth weights

    Zap. Nauchn. Sem. POMI, 368 (2009),  190–200
  30. The Chernoff-Type Large Deviations for Sums with a Random Normalization

    Teor. Veroyatnost. i Primenen., 53:4 (2008),  810–817
  31. On Gaussian Measure of Balls in a Hilbert Space

    Teor. Veroyatnost. i Primenen., 53:2 (2008),  382–390
  32. Small deviations of modified sums of independent random variables

    Zap. Nauchn. Sem. POMI, 361 (2008),  109–122
  33. Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution

    Teor. Veroyatnost. i Primenen., 52:1 (2007),  175–179
  34. A nonuniform estimate of the remainder in the central limit theorem

    Zap. Nauchn. Sem. POMI, 351 (2007),  238–241
  35. Small deviation probabilities for sums of independent positive random variables

    Zap. Nauchn. Sem. POMI, 341 (2007),  151–167
  36. Small deviation probabilities for a class of distributions with a polinomial decreasing at zero

    Zap. Nauchn. Sem. POMI, 328 (2005),  182–190
  37. On exact asymptotics in the weak law of large numbers for sums of independent random variables with a common distribution function from the domain of attraction of a stable law. II

    Teor. Veroyatnost. i Primenen., 49:4 (2004),  803–813
  38. On small deviation probabilities of positive random variables

    Zap. Nauchn. Sem. POMI, 320 (2004),  150–159
  39. Sums of independent random variables with finite variances – moderate deviations and nonuniform bounds in the CLT

    Zap. Nauchn. Sem. POMI, 311 (2004),  242–259
  40. On exact asymptotics in the weak law of large numbers for sums of independent random variables with a common distribution function from the domain of attraction of a stable law

    Teor. Veroyatnost. i Primenen., 48:3 (2003),  589–596
  41. Superlarge deviations of a sum of independent random variables having a common absolutely continuous distribution under the Cramér condition

    Teor. Veroyatnost. i Primenen., 48:1 (2003),  78–103
  42. Large deviation probabilities for some classes of distributions, satisfying the Cramer condition

    Zap. Nauchn. Sem. POMI, 298 (2003),  161–185
  43. An estimate from below of the remainder in the central limit theorem for a sum of independent random variables with finite moments of a high order

    Teor. Veroyatnost. i Primenen., 47:1 (2002),  169–178
  44. A remark on the Kolmogorov law of the iterated logarithm

    Teor. Veroyatnost. i Primenen., 47:1 (2002),  166–169
  45. Limit theorems for large derivations of sums of independent random variables with common distribution function from the domain of attraction of the normal law

    Zap. Nauchn. Sem. POMI, 294 (2002),  165–193
  46. On a lower bound of large – deviation probabilities for the sample mean under the Cramer condition

    Zap. Nauchn. Sem. POMI, 278 (2001),  208–224
  47. On some properties of a mean value

    Zap. Nauchn. Sem. POMI, 278 (2001),  204–207
  48. On the J. Doob inequality for characteristic functions

    Teor. Veroyatnost. i Primenen., 44:3 (1999),  650–652
  49. An extremal property of the uniform distribution and some of its consequences

    Teor. Veroyatnost. i Primenen., 44:3 (1999),  646–650
  50. On a Feller theorem

    Teor. Veroyatnost. i Primenen., 44:1 (1999),  128–132
  51. An estimate of the integral of the module of a generalized Poisson distribution characteristic function in a small length interval

    Zap. Nauchn. Sem. POMI, 260 (1999),  240–249
  52. A lower bound for large deviation probabilities of sum of independent random variables with finite variances

    Zap. Nauchn. Sem. POMI, 260 (1999),  218–239
  53. On the Cramér series coefficients

    Teor. Veroyatnost. i Primenen., 43:1 (1998),  161–166
  54. Probabilities of large deviations for sums of independent random variables with a common distribution function from the domain of attraction of an asymmetric stable law

    Teor. Veroyatnost. i Primenen., 42:3 (1997),  496–530
  55. A generalization of the Kolmogorov theorem on the law of the iterated logarithm

    Teor. Veroyatnost. i Primenen., 42:1 (1997),  134–143
  56. On the law of iterated logarithm for sums of the independent finite variation random variables

    Zap. Nauchn. Sem. POMI, 244 (1997),  257–270
  57. Large deviations of sums of independent random variables from the domain of attraction of a stable law

    Zap. Nauchn. Sem. POMI, 228 (1996),  262–283
  58. Sharpening of a Feller theorem on the law of iterated logarithm

    Zap. Nauchn. Sem. POMI, 216 (1994),  117–123
  59. Probabilities of large deviations on the whole axis

    Teor. Veroyatnost. i Primenen., 38:1 (1993),  79–109
  60. More about convergence rate in the weak law of large numbers

    Zap. Nauchn. Sem. LOMI, 194 (1992),  138–140
  61. Probabilities of Large Deviations of Sums of Independent Random Variables with a Common Distribution which Belongs to the Domain of Attraction of the Normal Law

    Teor. Veroyatnost. i Primenen., 34:4 (1989),  686–705
  62. Rate of Convergence in the Weak Law of Large Numbers

    Teor. Veroyatnost. i Primenen., 34:2 (1989),  392–395
  63. On the normal approximation ocuracy

    Zap. Nauchn. Sem. LOMI, 177 (1989),  129–137
  64. Asymptotic expansion of the Fourier–Stieltjes transform of a finite measure in a neighborhood of zero

    Mat. Zametki, 43:4 (1988),  558–572
  65. An estimate for probabilities of large deviations

    Mat. Zametki, 42:1 (1987),  145–156
  66. Normal approximation for calculating the rate of convergence in the weak law of large numbers

    Mat. Zametki, 40:2 (1986),  252–268
  67. On the accuracy of approximation in limit theorems for large deviations

    Teor. Veroyatnost. i Primenen., 31:2 (1986),  301–314
  68. A problem of A. N. Kolmogorov

    Dokl. Akad. Nauk SSSR, 283:2 (1985),  313–314
  69. Some estimates of probabilities of large deviations

    Teor. Veroyatnost. i Primenen., 30:4 (1985),  800–804
  70. Accuracy of the approximation of the characteristic functions by polynomials

    Zap. Nauchn. Sem. LOMI, 142 (1985),  141–144
  71. On the probability of large deviations of sums of independent identically distributed random variables

    Dokl. Akad. Nauk SSSR, 273:2 (1983),  301–306
  72. Estimates of the rate of convergence in the strong law of large numbers

    Mat. Zametki, 34:6 (1983),  883–896
  73. The probabilities of large deriations on Borel sets

    Zap. Nauchn. Sem. LOMI, 130 (1983),  157–166
  74. On limit theorems on large deviations in narrow zones

    Teor. Veroyatnost. i Primenen., 26:4 (1981),  847–857
  75. On the rate of convergence in the strong law of large numbers

    Teor. Veroyatnost. i Primenen., 26:1 (1981),  138–143
  76. Convergence rate to a normal law in an integral metric

    Mat. Zametki, 27:2 (1980),  307–316
  77. A lower bound of the remainder term in the central limit theorem

    Mat. Zametki, 24:3 (1978),  403–410
  78. An estimate of the speed of convergence in the multidmensional central limit theorem without moment hypotheses

    Mat. Zametki, 23:4 (1978),  627–640
  79. On the accuracy of the remainder term estimation in the central limit theorem

    Teor. Veroyatnost. i Primenen., 23:4 (1978),  744–761
  80. On asymptotic behaviour of the remainder term in the central limit theorem

    Teor. Veroyatnost. i Primenen., 23:1 (1978),  109–119
  81. Properties of asymptotic expansions

    Mat. Zametki, 22:6 (1977),  907–914
  82. Asymptotic expansions in the central limit theorem

    Teor. Veroyatnost. i Primenen., 20:4 (1975),  810–820
  83. Local limit theorems in $L_p$

    Mat. Zametki, 16:6 (1974),  951–956

  84. On Zhulev's paper “On large deviations. II”

    Teor. Veroyatnost. i Primenen., 51:2 (2006),  445–446


© Steklov Math. Inst. of RAS, 2025