RUS  ENG
Full version
PEOPLE

Suleimanova Galina Safiullanovna

Publications in Math-Net.Ru

  1. Enveloping algebras and ideals of the niltriangular subalgebra of the Chevalley algebra

    Sibirsk. Mat. Zh., 64:2 (2023),  292–311
  2. On centralizers of the graph automorphisms of niltriangular subalgebras of Chevalley algebras

    J. Sib. Fed. Univ. Math. Phys., 15:5 (2022),  679–682
  3. Nonassociative enveloping algebras of Chevalley algebras

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  91–100
  4. The highest dimension of commutative subalgebras in Chevalley algebras

    J. Sib. Fed. Univ. Math. Phys., 12:3 (2019),  351–354
  5. Generalization of A. I. Mal'tsev problem on commutativa subalgebras for Chevalley algebras

    Chebyshevskii Sb., 19:3 (2018),  231–240
  6. Highest dimension commutative ideals of a niltriangular subalgebra of a Chevalley algebra over a field

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  98–108
  7. Large elementary abelian unipotent subgroups in Lie type groups

    Bulletin of Irkutsk State University. Series Mathematics, 6:2 (2013),  69–76
  8. Thompson subgroups and large abelian unipotent subgroups of Lie-type groups

    J. Sib. Fed. Univ. Math. Phys., 6:1 (2013),  63–73
  9. The normal structure of the unipotent subgroup in Lie type groups and its extremal subgroups

    Fundam. Prikl. Mat., 17:1 (2012),  155–168
  10. Local automorphisms and local derivations of nilpotent matrix algebras

    Bulletin of Irkutsk State University. Series Mathematics, 4:1 (2011),  9–19
  11. Conjugacy of large abelian unipotent subgroups in a finite Chevalley group of type $E_8$

    J. Sib. Fed. Univ. Math. Phys., 4:4 (2011),  536–540
  12. Conjugacy classes of large abelian subgroups in the unipotent subgroup of a Chevalley group of type $F_4$

    Vladikavkaz. Mat. Zh., 13:2 (2011),  45–55
  13. On conjugacy in a Chevalley group of large Abelian subgroups of the unipotent subgroup

    Fundam. Prikl. Mat., 15:7 (2009),  205–216
  14. Automorphisms and normal structure of unipotent subgroups of finitary Chevalley groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  133–142
  15. The Normal Structure of the Unipotent Subgroup of a Chevalley Group of Type $E_6$, $E_7$, $E_8$

    J. Sib. Fed. Univ. Math. Phys., 1:2 (2008),  152–157
  16. Normal structure of a unipotent subgroup of a symplectic group

    Vladikavkaz. Mat. Zh., 10:1 (2008),  79–83
  17. Normal Structure of the Adjoint Group in the Radical Rings $R_n(K, J)$

    Sibirsk. Mat. Zh., 43:2 (2002),  419–437


© Steklov Math. Inst. of RAS, 2024