RUS  ENG
Full version
PEOPLE

Darus Maslina

Publications in Math-Net.Ru

  1. The second Hankel determinant for $k$-symmetrical functions

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2023, no. 2,  3–10
  2. A class of harmonic $(p,q)$-starlike functions involving a generalized $(p,q)$-Bernardi integral operator

    Probl. Anal. Issues Anal., 12(30):2 (2023),  17–36
  3. Subordination and superordination for certain analytic functions associated with Ruscheweyh derivative and a new generalised multiplier transformation

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 1,  22–34
  4. Threshold phenomenon for a family of the generalized Friedrichs models with the perturbation of rank one

    Ufimsk. Mat. Zh., 11:4 (2019),  139–149
  5. Certain subclasses of analytic functions defined by a new general linear operator

    Bulletin of Irkutsk State University. Series Mathematics, 24 (2018),  24–36
  6. On certain subclasses of analytic functions with varying arguments of coefficients

    Bulletin of Irkutsk State University. Series Mathematics, 23 (2018),  80–95
  7. Partial sums of a generalized class of analytic functions defined by a generalized Srivastava–Attiya operator

    Sib. Èlektron. Mat. Izv., 15 (2018),  362–372
  8. Inclusion and convolution properties of a certain class of analytic functions

    Eurasian Math. J., 8:4 (2017),  11–17
  9. Certain classes of $p$-valent analytic functions with negative coefficients and $(\lambda,p)$-starlike with respect to certain points

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 3,  35–49
  10. On certain classes of fractional $p$-valent analytic functions

    Bulletin of Irkutsk State University. Series Mathematics, 11 (2015),  28–38
  11. Certain properties of an operator involving subordination

    Probl. Anal. Issues Anal., 4(22):2 (2015),  65–72
  12. A study on a class of $p$-valent functions associated with generalized hypergeometric functions

    Vladikavkaz. Mat. Zh., 17:1 (2015),  31–38
  13. Certain class of harmonic multivalent functions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:3 (2015),  388–396
  14. Some Applications of Meijer $G$-Functions as Solutions of Differential Equations in Physical Models

    Zh. Mat. Fiz. Anal. Geom., 9:3 (2013),  379–391
  15. Inclusion properties for certain subclasses of $p$-valent functions associated with new generalized derivative operator

    Vladikavkaz. Mat. Zh., 15:2 (2013),  27–34
  16. On harmonic univalent functions defined by a generalized Ruscheweyh derivatives operator

    Lobachevskii J. Math., 22 (2006),  19–26


© Steklov Math. Inst. of RAS, 2024