RUS  ENG
Full version
PEOPLE

Voloshinov Vladimir Vladimirovich

Publications in Math-Net.Ru

  1. Technology of balanced identification for selection of pine transpiration mathematical model

    Mat. Biolog. Bioinform., 14:2 (2019),  665–682
  2. A generalization of the Karush–Kuhn–Tucker theorem for approximate solutions of mathematical programming problems based on quadratic approximation

    Zh. Vychisl. Mat. Mat. Fiz., 58:3 (2018),  383–396
  3. Evaluation of a coarse-grained branch-and-bound algorithm in the Everest computing environment

    Program Systems: Theory and Applications, 8:1 (2017),  105–119
  4. Diffraction-based characterization of amorphous $\operatorname{sp}^2$ carbon: sensitivity to domain-like packing of nanostructures

    Nanosystems: Physics, Chemistry, Mathematics, 7:1 (2016),  226–233
  5. Effective use of discrete optimization solvers in cloud infrastructure on the basis of heuristic decomposition of the initial problem by optimization modeling system AMPL

    Program Systems: Theory and Applications, 7:1 (2016),  29–46
  6. Pre-decomposition of discrete optimization problems to speed up the branch and bound method in a distributed computing environment

    Computer Research and Modeling, 7:3 (2015),  719–725
  7. Software integration in scientific computing

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2012, no. 3,  66–71
  8. X-ray nanomaterial diffractometry data processing in the distributed environment of restful services

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2011, no. 4,  10–20
  9. Интеграция инструментария IARnet с технологией ICE

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2008, no. 1,  38–50
  10. Реализация GRID-вычислений в среде IARnet

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2005, no. 2,  61–75
  11. Approximate search for a global minimum in problems of mathematical programming that are close to convex

    Zh. Vychisl. Mat. Mat. Fiz., 39:3 (1999),  386–417
  12. Approximate global minimization of nonconvex functions that are close to convex

    Zh. Vychisl. Mat. Mat. Fiz., 37:7 (1997),  771–784
  13. Construction of Continuous Demand Functions by the Methods of Economic Index Theory

    Avtomat. i Telemekh., 1996, no. 9,  158–166
  14. Approximation methods for problems of nonlinear programming

    Zh. Vychisl. Mat. Mat. Fiz., 34:8-9 (1994),  1133–1149


© Steklov Math. Inst. of RAS, 2025