RUS  ENG
Full version
PEOPLE

Tolstykh Andrey Igorevich

Publications in Math-Net.Ru

  1. On Tollmien – Schlichting instability in numerical solutions of the Navier – Stokes equations obtained with 16th-order multioperators-based scheme

    Computer Research and Modeling, 14:4 (2022),  953–967
  2. Parallel implementation of the 16th-order multioperator scheme: application to problems of instability of vortices and boundary layers

    Matem. Mod., 34:8 (2022),  3–18
  3. Excitation and development of instability in a compressible boundary layer as obtained in high-order accurate numerical simulation without introducing artificial perturbations

    Zh. Vychisl. Mat. Mat. Fiz., 62:7 (2022),  1209–1223
  4. Application of compact and multioperator approximations in the immersed boundary method

    Zh. Vychisl. Mat. Mat. Fiz., 58:8 (2018),  157–181
  5. On the use of multioperators in the construction of high-order grid approximations

    Zh. Vychisl. Mat. Mat. Fiz., 56:6 (2016),  943–957
  6. Hybrid schemes with high-order multioperators for computing discontinuous solutions

    Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013),  1481–1502
  7. Tenth-order accurate multioperator scheme and its application in direct numerical simulation

    Zh. Vychisl. Mat. Mat. Fiz., 53:4 (2013),  600–614
  8. Numerical simulation of shear layer instability using a scheme with ninth-order multioperator approximations

    Zh. Vychisl. Mat. Mat. Fiz., 53:3 (2013),  417–432
  9. Family of fifth-order three-level schemes for evolution problems

    Zh. Vychisl. Mat. Mat. Fiz., 51:2 (2011),  206–221
  10. On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order

    Zh. Vychisl. Mat. Mat. Fiz., 51:1 (2011),  56–73
  11. On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms

    Zh. Vychisl. Mat. Mat. Fiz., 50:5 (2010),  894–907
  12. Application of compact and multioperator schemes to the numerical simulation of acoustic fields generated by instability waves in supersonic jets

    Zh. Vychisl. Mat. Mat. Fiz., 49:7 (2009),  1280–1294
  13. A parallel computational scheme with ninth-order multioperator approximations and its application to direct numerical simulation

    Zh. Vychisl. Mat. Mat. Fiz., 46:8 (2006),  1433–1452
  14. Meshless method based on radial basis functions

    Zh. Vychisl. Mat. Mat. Fiz., 45:8 (2005),  1498–1505
  15. Fifth- and seventh-order accurate multioperator schemes

    Zh. Vychisl. Mat. Mat. Fiz., 43:7 (2003),  1018–1034
  16. Integro-interpolation schemes of a given order and other applications of the multioperator principle

    Zh. Vychisl. Mat. Mat. Fiz., 42:11 (2002),  1712–1726
  17. Construction of schemes of prescribed order of accuracy with linear combinations of operators

    Zh. Vychisl. Mat. Mat. Fiz., 40:8 (2000),  1206–1220
  18. Comparative efficiency of schemes based on upwind compact approximations

    Zh. Vychisl. Mat. Mat. Fiz., 39:10 (1999),  1705–1720
  19. Numerical simulation of aero-optical fields near an open port of airborne observatory

    Matem. Mod., 9:1 (1997),  27–39
  20. Difference schemes with fifth-order compact approximations for three-dimensional viscous gas flows

    Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996),  71–85
  21. Iterative schemes with noncentered compact approximations

    Dokl. Akad. Nauk, 326:3 (1992),  425–430
  22. A class of noncentered fifth-order compact difference schemes based on Padé approximations

    Dokl. Akad. Nauk SSSR, 319:1 (1991),  72–77
  23. Numerical modeling of unsteady separated flows of incompressible liquid based on the fifth-order compact approximations

    Dokl. Akad. Nauk SSSR, 312:2 (1990),  311–314
  24. Compact third-order approximations in algorithms for an incompressible fluid

    Zh. Vychisl. Mat. Mat. Fiz., 29:10 (1989),  1514–1529
  25. Compact third- and fourth-order schemes in problems concerning internal flows of viscous and non-viscous gases

    Zh. Vychisl. Mat. Mat. Fiz., 28:8 (1988),  1234–1251
  26. Algorithms for calculating viscous gas flows based on compact third-order approximations

    Zh. Vychisl. Mat. Mat. Fiz., 27:11 (1987),  1709–1724
  27. A third-order scheme and some of its applications

    Dokl. Akad. Nauk SSSR, 291:1 (1986),  45–49
  28. Nonsymmetric three-point difference schemes of the fourth and fifth order

    Zh. Vychisl. Mat. Mat. Fiz., 25:8 (1985),  1164–1175
  29. The small parameter method for the numerical study of the flow of a stratified medium

    Zh. Vychisl. Mat. Mat. Fiz., 24:5 (1984),  771–775
  30. An internal iteration method for solving three-dimensional problems with nonselfadjoint operators

    Dokl. Akad. Nauk SSSR, 272:3 (1983),  538–541
  31. A difference method of increased accuracy for the calculation of flows of a viscous gas

    Zh. Vychisl. Mat. Mat. Fiz., 22:6 (1982),  1480–1490
  32. Implicit schemes of higher accuracy for systems of equations

    Zh. Vychisl. Mat. Mat. Fiz., 21:2 (1981),  339–354
  33. Condensation of the nodes of the difference networks in the solution process, and the application of schemes of improved accuracy in the numerical study of viscous gas flows

    Zh. Vychisl. Mat. Mat. Fiz., 18:1 (1978),  139–153
  34. Implicit difference schemes of third order accuracy for multidimensional problems

    Zh. Vychisl. Mat. Mat. Fiz., 16:5 (1976),  1182–1190
  35. Implicit high-accuracy finite-difference schemes for the “shock capturing” calculation of discontinuous

    Zh. Vychisl. Mat. Mat. Fiz., 15:2 (1975),  527–531
  36. On the method of numerical solution of Navier–Stokes equations for a compressible gas in wide range of Reynolds numbers

    Dokl. Akad. Nauk SSSR, 210:1 (1973),  48–51
  37. Numerical solution of certain problems in gas dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 10:2 (1970),  401–416
  38. Numerical computation of the supersonic flow of a viscous gas round a blunt body

    Zh. Vychisl. Mat. Mat. Fiz., 6:1 (1966),  113–120

  39. In memory of A. S. Kholodov

    Computer Research and Modeling, 9:5 (2017),  677–678
  40. In memory of O. M. Belotserkovskii

    Matem. Mod., 28:2 (2016),  3–5
  41. In memory of Academician of the RAS Oleg Mikhailovich Belotserkovskii

    Zh. Vychisl. Mat. Mat. Fiz., 56:6 (2016),  921–926


© Steklov Math. Inst. of RAS, 2024