RUS  ENG
Full version
PEOPLE

Badriev Il'dar Burkhanovich

Publications in Math-Net.Ru

  1. Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversal-soft core

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 1,  77–85
  2. The axisymmetric problems of geometrically nonlinear deformation and stability of a sandwich cylindrical shell with contour reinforcing beams

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:4 (2017),  395–428
  3. Longitudinal and transverse bending on the cylindrical shape of a sandwich plate reinforced with absolutely rigid bodies in the front sections

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:2 (2017),  174–190
  4. Geometrically nonlinear problem of longitudinal and transverse bending of a sandwich plate with transversally soft core

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158:4 (2016),  453–468
  5. Solvability of a physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 10,  66–71
  6. On the interaction of composite plate having a vibration-absorbing covering with the acoustic wave

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 3,  75–82
  7. On solving physically nonlinear equilibrium problems for sandwich plates with a transversely soft filler

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:1 (2015),  15–24
  8. Mathematical simulation of stationary filtration problem with multivalued law in multilayer beds

    Mat. Model., 26:5 (2014),  126–136
  9. Iterative Methods for Solving Variational Inequalities of the Theory of Soft Shells

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:2 (2013),  18–32
  10. Mathematical modeling of the equilibrium problem for a soft biological shell. I. Generalized statement

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:4 (2012),  57–73
  11. Iterative method for solving seepage problems in multilayer beds in the presence of a point source

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 152:4 (2010),  39–55
  12. Existence of solution of the equilibrium soft network shell problem in the presence of a point load

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 152:1 (2010),  93–102
  13. Numerical solving of stationary anisotropic filtration problems

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:3 (2009),  74–84
  14. On Approximative Methods for Solving Quasi-Variational Inequalities of the Soft Network Shells Theory

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 150:3 (2008),  104–116
  15. On the method of solving of nonlinear stationary anisotropic filtration problems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 3,  3–11
  16. On the convergence of iterative method for solving a variational inequality of the second kind with inversely strongly monotone operator

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 149:4 (2007),  90–100
  17. Mathematical simulation of stationary anisotropic problems of seepage theory with multi-valued law

    Vestn. Udmurtsk. Univ. Mat., 2007, no. 1,  3–8
  18. On the convergence of the dual-type iterative method for mixed variational inequalities

    Differ. Uravn., 42:8 (2006),  1115–1122
  19. On the iterative method for solving a variational inequalities with inversely strongly monotone operators

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:3 (2006),  23–41
  20. Analysis of the Stationary Filtration Problem with a Multivalued Law in the Presence of a Point Source

    Differ. Uravn., 41:7 (2005),  874–880
  21. Investigation of the solvability of an axisymmetric problem of determining the equilibrium position of a soft shell of revolution

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 1,  25–30
  22. A Study of Variable Step Iterative Methods for Variational Inequalities of the Second Kind

    Differ. Uravn., 40:7 (2004),  908–919
  23. A Decomposition Method for Variational Inequalities of the Second Kind with Strongly Inverse-Monotone Operators

    Differ. Uravn., 39:7 (2003),  888–895
  24. Iterative methods for solving variational inequalities of the second kind with inversely strongly monotone operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 1,  20–28
  25. Construction and Convergence Analysis of Iterative Methods for Variational Problems with a Nondifferentiable Functional

    Differ. Uravn., 38:7 (2002),  930–935
  26. Convergence Analysis of Iterative Methods for Some Variational Inequalities with Pseudomonotone Operators

    Differ. Uravn., 37:7 (2001),  891–898
  27. Investigation of the convergence of iterative methods for solving nonlinear problems in filtration theory

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 11,  8–13
  28. Iterative methods for solving filtration problems with a discontinuous law with a limit gradient

    Differ. Uravn., 33:3 (1997),  396–399
  29. The strong convergence of the iteration method for operators with degeneracy

    Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997),  1424–1426
  30. Investigation of the convergence of an iterative process for equations with degenerate operators

    Differ. Uravn., 32:7 (1996),  898–901
  31. Investigation of the solvability of stationary problems for latticed shells

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 11,  3–7
  32. Investigation of one-dimensional equations of the static state of a soft shell and of an algorithm for their solution

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 1,  8–16
  33. A study of the convergence of a recursive process for solving a stationary problem of the theory of soft shells

    Issled. Prikl. Mat., 18 (1992),  3–12
  34. Convergence of an iterative process in a Banach space

    Issled. Prikl. Mat., 17 (1990),  3–15
  35. Mixed finite-element method for nonlinear stationary problems of seepage theory

    Issled. Prikl. Mat., 16 (1989),  17–34
  36. Regularization of the nonlinear problem of seepage theory with a discontinuous law

    Issled. Prikl. Mat., 10 (1984),  162–176
  37. Difference schemes for nonlinear problems of filtration theory with a discontinuous law

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 5,  3–12
  38. Application of the duality method to the solution of nonlinear problems of filtration theory with a limit gradient

    Differ. Uravn., 18:7 (1982),  1133–1144
  39. The variational method for equations with monotone discontinuous operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 11,  63–69

  40. Karchevskii Mikhail Mironovich (on the occasion of the 70th birthday)

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:4 (2014),  149–156


© Steklov Math. Inst. of RAS, 2025