RUS  ENG
Full version
PEOPLE

Poplavskaya Tat'yana Vladimirovna

Publications in Math-Net.Ru

  1. Effect of the jet pressure ratio in supersonic axisymmetric jets of a polyatomic gas SF$_6$ on their gas-dynamic structure

    Prikl. Mekh. Tekh. Fiz., 65:1 (2024),  47–57
  2. Computational grids for engineering modeling of the laminar–turbulent flow

    Prikl. Mekh. Tekh. Fiz., 63:6 (2022),  91–95
  3. Similarity parameter for the drag coefficient of a cylinder with a high-porosity frontal insert aligned at an angle of attack in a supersonic flow

    Prikl. Mekh. Tekh. Fiz., 63:6 (2022),  82–90
  4. Controlling the aerodynamic drag of a cylinder with gas-permeable porous inserts by regulating base pressure

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:8 (2021),  41–43
  5. Determination of threshold $N$-factors of the laminar-turbulent transition in a subsonic boundary layer on a prolate spheroid

    Prikl. Mekh. Tekh. Fiz., 62:6 (2021),  3–7
  6. Thermal methods of drag control for cylindrical bodies with porous inserts in a supersonic flow

    Prikl. Mekh. Tekh. Fiz., 62:2 (2021),  5–16
  7. Physical and mathematical modeling of a supersonic flow around bodies with gas-permeable porous inserts at an angle of attack

    Prikl. Mekh. Tekh. Fiz., 61:5 (2020),  14–20
  8. Numerical study of the evolution of disturbances generated by roughness elements in a supersonic boundary layer on a blunted cone

    Prikl. Mekh. Tekh. Fiz., 60:3 (2019),  45–59
  9. A similarity criterion for supersonic flow past a cylinder with a frontal high-porosity cellular insert

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:6 (2018),  3–10
  10. Coefficients of transformation of long-wavelength perturbations of a supersonic incident flow around a wedge into pressure fluctuations on its surface

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:21 (2016),  70–78
  11. A numerical study of non-equilibrium flows with different vibrational relaxation models

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:13 (2016),  72–79
  12. Engineering modeling of the laminar–turbulent transition: Achievements and problems (Review)

    Prikl. Mekh. Tekh. Fiz., 56:5 (2015),  30–49
  13. Modeling of a supersonic flow around a cylinder with a gas-permeable porous insert

    Prikl. Mekh. Tekh. Fiz., 56:4 (2015),  12–22
  14. ANSYS Fluent application for studying the influence of acoustic waves on a hypersonic shock layer over a flat plate

    Matem. Mod., 25:9 (2013),  32–42
  15. Control of disturbances of a hypersonic viscous shock layer on a flat plate

    Prikl. Mekh. Tekh. Fiz., 53:3 (2012),  38–47
  16. Effect of sound-absorbing materials on intensity of disturbances in the shock layer on a flat plate aligned at an angle of attack

    Prikl. Mekh. Tekh. Fiz., 53:2 (2012),  21–32
  17. Bispectral analysis of numerical simulations of wave processes in hypersonic shock layers

    Prikl. Mekh. Tekh. Fiz., 53:1 (2012),  3–11
  18. Wave processes in the shock layer on a flat plate at an angle of attack

    Prikl. Mekh. Tekh. Fiz., 51:4 (2010),  39–47
  19. Application of high-order accuracy schemes to numerical simulation of unsteady supersonic flows

    Matem. Mod., 19:7 (2007),  39–55
  20. Numerical simulation of receptivity of a hypersonic boundary layer to acoustic disturbances

    Prikl. Mekh. Tekh. Fiz., 48:3 (2007),  84–91
  21. Experimental study and direct numerical simulation of the evolution of disturbances in a viscous shock layer on a flat plate

    Prikl. Mekh. Tekh. Fiz., 47:5 (2006),  3–15
  22. Viscous Shock Layer on a Cone in Hypersonic Flow

    TVT, 40:2 (2002),  256–261
  23. Numerical simulation of hypersonic flow around a sharp cone

    Prikl. Mekh. Tekh. Fiz., 42:3 (2001),  43–50
  24. Investigation of aerodynamic heating of a plate in a viscous hypersonic flow

    TVT, 37:3 (1999),  415–419
  25. The effect of the angle of attack on hypersonic flow on a plate

    TVT, 36:5 (1998),  754–760
  26. A numerical study of a viscous shock layer on a plate

    Prikl. Mekh. Tekh. Fiz., 38:2 (1997),  91–100
  27. Hypersonic flow on a flat plate. Experimental results and numerical modeling

    Prikl. Mekh. Tekh. Fiz., 36:6 (1995),  60–67
  28. Computational analysis of a spatial compressed turbulent boundary layer on the upwind side of delta wings under supersonic flow

    Prikl. Mekh. Tekh. Fiz., 35:1 (1994),  68–74
  29. Numerical calculation of a three-dimensional laminar compressible boundary layer on profiled triangular wings with supersonic front edges

    Prikl. Mekh. Tekh. Fiz., 34:5 (1993),  88–94
  30. Calculation of a laminar boundary layer on the leeward side of a triangular plate with supersonic leading edges

    Prikl. Mekh. Tekh. Fiz., 30:1 (1989),  75–81
  31. Compressible laminar boundary layer on a delta wing with attached shock wave

    Prikl. Mekh. Tekh. Fiz., 26:5 (1985),  23–29


© Steklov Math. Inst. of RAS, 2024