RUS  ENG
Full version
PEOPLE

Teptin Anatolii Lavrovich

Publications in Math-Net.Ru

  1. On the sign of the Green's function of a boundary value problem with periodic and Sturm's boundary conditions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  150–151
  2. A multipoint boundary value problem with a sign-regular Green function

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 9,  69–80
  3. On the oscillation of the spectrum of a multipoint boundary value problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 4,  44–53
  4. On the oscillation of the spectrum of a multipoint boundary value problem

    Differ. Uravn., 31:8 (1995),  1370–1380
  5. On the oscillatory character of the kernel connected with the Green’s function of a multi-point problem

    Differ. Uravn., 26:2 (1990),  358–360
  6. A new condition for the sign-constancy of the Green function

    Differ. Uravn., 24:6 (1988),  1066–1069
  7. On the sign of the Green difference function

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 4,  69–72
  8. On the sign of the Green function

    Differ. Uravn., 23:4 (1987),  670–674
  9. The Green function of a multipoint problem

    Differ. Uravn., 22:11 (1986),  2011–2014
  10. A multipoint boundary value problem whose Green function changes sign in “checkerboard sign pattern”

    Differ. Uravn., 20:11 (1984),  1910–1914
  11. Nonoscillation of solutions and the sign of the Green function

    Differ. Uravn., 20:6 (1984),  995–1005
  12. The sign of the Green function of a boundary value problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 6,  53–55
  13. On the question of the sign of the Green function

    Differ. Uravn., 19:9 (1983),  1542–1547
  14. The sign of the Green function for a multipoint difference boundary value problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 1,  86–88
  15. On the sign of the Green function of a difference boundary value problem

    Differ. Uravn., 17:12 (1981),  2283–2286
  16. Estimates of the Green function of a multipoint boundary value problem

    Differ. Uravn., 17:6 (1981),  1007–1015
  17. The difference Green function that changes signs only on the lines $x=\mathrm{const}$, $s=\mathrm{const}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 8,  47–51
  18. Новый случай применимости теоремы о дифференциальном неравенстве

    Differ. Uravn., 16:6 (1980),  1138–1139
  19. A two-sided numerical method of solving the boundary value problem $y^{'''}=f(t,y)$, $y(a_i)=c_i$ ($i=1,2,3$)

    Differ. Uravn., 12:9 (1976),  1705–1711
  20. The stability of multipoint boundary value problems for difference equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 6,  74–79
  21. On difference inequalities in the two-sided difference method of solving a boundary problem

    Sibirsk. Mat. Zh., 13:3 (1972),  728
  22. The bilateral difference schemes for the de la Vallée-Poussin boundary value problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 7,  102–109
  23. Transfer of a theorem on difference inequalities to boundary value problems with a condition at infinity.

    Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 4,  83–91
  24. Applicability of the sweep method to the difference analog of a De la Valee–Poussin boundary value problem

    Zh. Vychisl. Mat. Mat. Fiz., 9:2 (1969),  457–462
  25. On the question of the applicability of the maximum principle to an elliptic difference equation

    Differ. Uravn., 4:3 (1968),  508–517
  26. The sign of Green's function for an even multipoint difference bondary value problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 1,  108–118
  27. A difference analogue of Mikusinski's theorem and its applications

    Zh. Vychisl. Mat. Mat. Fiz., 8:1 (1968),  125–135
  28. Conditions of validity of Čaplygin's theorem for elliptic difference equations

    Differ. Uravn., 3:6 (1967),  1009–1021
  29. An effective criterion for the existence and constancy of sign of the Green's function for certain difference boundary value problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 1,  102–106
  30. A question on conservation of the sign of the Green's function for multi-point boundary value problems

    Sibirsk. Mat. Zh., 8:4 (1967),  865–875
  31. Estimation of the non-oscillation interval for a difference equation and for difference boundary value problems

    Differ. Uravn., 2:11 (1966),  1449–1468
  32. On the question of estimation of the non-oscillation interval for an equation in finite differences

    Sibirsk. Mat. Zh., 7:6 (1966),  1370–1382
  33. On certain properties of solutions of linear difference equations approximating differential equations in the interval of non-oscillation

    Differ. Uravn., 1:4 (1965),  478–498
  34. On non-oscillatory solutions of linear difference equations and multi-point difference boundary value problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 4,  140–146
  35. Theorems on the behaviour of the Green's function of a finite-difference analogue of a Sturm–Liouville boundary-value problem and their application to the study of differential equations

    Sibirsk. Mat. Zh., 5:5 (1964),  1163–1180
  36. Oscillations of solutions of a linear second-order difference equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1963, no. 2,  120–123
  37. Theorems on difference inequalities for $n$-point difference boundary problems

    Mat. Sb. (N.S.), 62(104):3 (1963),  345–370
  38. The behavior of the Green's function for a multi-point linear difference boundary-value problem

    Dokl. Akad. Nauk SSSR, 147:1 (1962),  38–40
  39. On the sign of the Green's function of a linear difference boundary-value problem of second order

    Dokl. Akad. Nauk SSSR, 142:5 (1962),  1038–1039
  40. Conditions for solvability of a problem of Chaplygin for partial difference equations

    Sibirsk. Mat. Zh., 2:1 (1961),  138–143
  41. On conditions of solvability of the Čaplygin problem for difference equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1960, no. 5,  180–185
  42. Conditions for the solvability of Čaplygin's problem for linear difference equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 4,  265–269


© Steklov Math. Inst. of RAS, 2024