RUS  ENG
Full version
PEOPLE

Buldaev Alexander Sergeevich

Publications in Math-Net.Ru

  1. Optimization methods for bilinear control systems based on fixed point problems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 238 (2025),  36–48
  2. An approach to calculating degenerate extremal controls based on fixed point problems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 234 (2024),  118–132
  3. Operator methods of the search for extremal controls in linear-quadratic optimal control problems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224 (2023),  19–27
  4. Operator forms and methods of the maximum principle in optimal control problems with constraints

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213 (2022),  47–53
  5. Fixed-point methods in optimization problems for control systems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 183 (2020),  22–34
  6. On a method for finding extremal controls in systems with constraints

    Bulletin of Irkutsk State University. Series Mathematics, 30 (2019),  16–30
  7. About one approach to numerical solution of nonlinear optimal speed problems

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018),  55–66
  8. The fixed point method for the problems of nonlinear systems optimization on the managing functions and parameters

    Bulletin of Irkutsk State University. Series Mathematics, 19 (2017),  89–104
  9. Problems and methods of the fixed points of the maximum principle

    Bulletin of Irkutsk State University. Series Mathematics, 14 (2015),  31–41
  10. Projection Perturbation Methods in Optimization Problems of Controlled Systems

    Bulletin of Irkutsk State University. Series Mathematics, 8 (2014),  29–43
  11. The fixed point method in parametric optimization problems for systems

    Avtomat. i Telemekh., 2013, no. 12,  5–14
  12. A boundary improvement problem for linearly controlled processes

    Avtomat. i Telemekh., 2011, no. 6,  87–94
  13. Nonlocal improvement of controls in state-linear systems with terminal constraints

    Avtomat. i Telemekh., 2009, no. 5,  7–12
  14. Methods of perturbations in quadratic problems of optimal control

    Avtomat. i Telemekh., 2008, no. 3,  135–145
  15. Projection procedures for the nonlocal improvement of linearly controlled processes

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 1,  18–24
  16. Nonlocal improvement of controls in systems with delay

    Zh. Vychisl. Mat. Mat. Fiz., 43:2 (2003),  176–185
  17. On the optimization of dynamical systems that are quadratic with respect to the state

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 12,  30–38
  18. Nonlocal improvement of controls in dynamical systems that are quadratic with respect to the state

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 12,  3–9
  19. Control over oscillations in delayed systems for modelling of diseases

    Mat. Model., 3:6 (1991),  10–21
  20. A numerical method of control optimization in delay systems for immune response modelling

    Zh. Vychisl. Mat. Mat. Fiz., 30:9 (1990),  1307–1322

  21. Generalized statements and solutions of the problems of control

    Avtomat. i Telemekh., 2011, no. 6,  3–4


© Steklov Math. Inst. of RAS, 2025