|
|
Publications in Math-Net.Ru
-
A model of age-structured population under stochastic perturbation of death and birth rates
Ural Math. J., 4:1 (2018), 3–13
-
Stochastic equations with an unbounded operator coefficient and multiplicative noise
Sibirsk. Mat. Zh., 58:6 (2017), 1354–1371
-
White noise calculus in applications to stochastic equations in Hilbert spaces
CMFD, 53 (2014), 30–63
-
The Itô integral and the Hitsuda–Skorohod integral in the infinite dimensional case
Sib. Èlektron. Mat. Izv., 11 (2014), 185–199
-
The generalized well-posedness of the Cauchy problem for an abstract stochastic equation with multiplicative noise
Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012), 251–267
-
Gaussian white noise with trajectories in the space $\mathcal S'(H)$
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 5, 3–11
-
Regularized and generalized solutions of infinite-dimensional stochastic problems
Mat. Sb., 202:11 (2011), 3–30
-
Стохастически возмущенное уравнение популяционной динамики
Matem. Mod. Kraev. Zadachi, 3 (2010), 15–18
-
Задача Коши для стохастического уравнения в гильбертовом пространстве с операторным коэффициентом, порождающим R-полугруппу
Matem. Mod. Kraev. Zadachi, 3 (2009), 22–25
-
Abstract stochastic equations. II. Solutions in spaces of abstract stochastic distributions
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 96 (2006), 212–271
-
A model of a Hilbert space-valued white noise
Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 2, 10–18
-
Вырожденные полугруппы и
равномерная корректность задачи Коши для уравнения типа
Соболева
Vestnik Chelyabinsk. Gos. Univ., 1999, no. 4, 134–144
-
Вырожденные интегрированные полугруппы и $n$-$w$-корректность задачи Коши для уравнения Соболева
Vestnik Chelyabinsk. Gos. Univ., 1999, no. 4, 30–36
-
Generalized well-posedness of the Cauchy problem, and integrated
semigroups
Dokl. Akad. Nauk, 343:4 (1995), 448–451
-
Well-posedness of the degenerate Cauchy problem in a Banach space
Dokl. Akad. Nauk, 336:1 (1994), 17–20
-
Numerical implementation of the boundary-value problem method for the regularization of ill-posed problems
Zh. Vychisl. Mat. Mat. Fiz., 31:6 (1991), 929–933
© , 2024