RUS  ENG
Full version
PEOPLE

Chistov Alexander Leonidovich

Publications in Math-Net.Ru

  1. An algorithm for factoring polynomials in the ring of multivariable formal power series in zero–characteristic. II

    Zap. Nauchn. Sem. POMI, 528 (2023),  261–290
  2. An algorithm for factoring polynomials in the ring of multivariable formal power series in zero–characteristic

    Zap. Nauchn. Sem. POMI, 517 (2022),  268–290
  3. An efficient algorithm for testing the solvability for a system of polynomial equations over $p$-adic integers

    Algebra i Analiz, 33:6 (2021),  162–196
  4. An effective construction of a small number of equations defining an algebraic variety

    Zap. Nauchn. Sem. POMI, 507 (2021),  140–156
  5. Subexponential-time computation of isolated primary components of a polynomial ideal

    Zap. Nauchn. Sem. POMI, 498 (2020),  64–74
  6. Efficient estimation of roots from the field of fractional power series of a given polynomial in nonzero characteristic

    Zap. Nauchn. Sem. POMI, 498 (2020),  55–63
  7. Systems with parameters, or efficiently solving systems of polynomial equations 33 years later

    Zap. Nauchn. Sem. POMI, 481 (2019),  146–177
  8. Systems with parameters, or efficiently solving systems of polynomial equations: 33 years later. II

    Zap. Nauchn. Sem. POMI, 468 (2018),  138–176
  9. Systems with parameters, or efficiently solving systems of polynomial equations: 33 years later. I

    Zap. Nauchn. Sem. POMI, 462 (2017),  122–166
  10. Extension of the Newton–Puiseux algorithm to the case of a nonzero characteristic ground field. I

    Algebra i Analiz, 28:6 (2016),  147–188
  11. Efficient absolute factorization of polynomials with parametric coefficients

    Zap. Nauchn. Sem. POMI, 448 (2016),  286–325
  12. Computations with parameters: a theoretical background

    Zap. Nauchn. Sem. POMI, 436 (2015),  219–239
  13. A deterministic polynomial-time algorithm for the first Bertini theorem. III

    Zap. Nauchn. Sem. POMI, 432 (2015),  297–323
  14. A deterministic polynomial-time algorithm for the first Bertini theorem. II

    Zap. Nauchn. Sem. POMI, 421 (2014),  214–249
  15. A deterministic polynomial-time algorithm for the first Bertini theorem. I

    Zap. Nauchn. Sem. POMI, 411 (2013),  191–239
  16. Estimating the power of a system of equations that determines a variety of reducible polynomials

    Algebra i Analiz, 24:3 (2012),  199–222
  17. An effective version of the first Bertini theorem in nonzero characteristic and its applications

    Zap. Nauchn. Sem. POMI, 403 (2012),  172–196
  18. An improvement of the complexity bound for solving systems of polynomial equations

    Zap. Nauchn. Sem. POMI, 390 (2011),  299–306
  19. Effective construction of a nonsingular in codimension one algebraic variety over a zero-characteristic ground field

    Zap. Nauchn. Sem. POMI, 387 (2011),  167–188
  20. Polynomial-time algorithms for a new model of representation of algebraic varieties (in characteristic zero)

    Zap. Nauchn. Sem. POMI, 378 (2010),  133–170
  21. Эффективная нормализация неособого в коразмерности один алгебраического многообразия

    Dokl. Akad. Nauk, 427:5 (2009),  605–608
  22. An overview of effective normalization of a nonsingular in codimension one projective algebraic variety

    Zap. Nauchn. Sem. POMI, 373 (2009),  295–317
  23. Double-exponential lower bound for the degree of any system of generators of a polynomial prime ideal

    Algebra i Analiz, 20:6 (2008),  186–213
  24. Complexity of the Standard Basis of a $D$-Module

    Algebra i Analiz, 20:5 (2008),  41–82
  25. Polynomial-time computation of the degree of a dominant morphism in zero characteristic. IV

    Zap. Nauchn. Sem. POMI, 360 (2008),  260–294
  26. Inequalities for Hilbert functions and primary decompositions

    Algebra i Analiz, 19:6 (2007),  143–172
  27. Polynomial-time computation of the degree of a dominant morphism in zero characteristic. III

    Zap. Nauchn. Sem. POMI, 344 (2007),  203–239
  28. Efficient construction of local parameters of irreducible components of an algebraic variety in nonzero characteristic

    Zap. Nauchn. Sem. POMI, 326 (2005),  248–278
  29. Polynomial-time computation of the degree of a dominant morphism in zero characteristic. II

    Zap. Nauchn. Sem. POMI, 325 (2005),  181–224
  30. Polynomial-time computation of the degree of a dominant morphism in characteristic zero. I

    Zap. Nauchn. Sem. POMI, 307 (2004),  189–235
  31. Monodromy and irreducibility criteria with algorithmic applications in zero characteristic

    Zap. Nauchn. Sem. POMI, 292 (2002),  130–152
  32. Efficient smooth stratification of an algebraic variety in zero characteristic and its applications

    Zap. Nauchn. Sem. POMI, 266 (2000),  254–311
  33. Polynomial-time computation of degrees of algebraic varieties in zero-characteristic and its applications

    Zap. Nauchn. Sem. POMI, 258 (1999),  7–59
  34. Strong version of the basic deciding algorithm for the existential theory of real fields

    Zap. Nauchn. Sem. POMI, 256 (1999),  168–211
  35. Polynomial-time factoring polynomials over local fields

    Zap. Nauchn. Sem. LOMI, 192 (1991),  112–148
  36. The complexity of the construction of the ring of integers of a global field

    Dokl. Akad. Nauk SSSR, 306:5 (1989),  1063–1067
  37. Polynomial-time algorithms for computational problems in the theory of algebraic curves

    Zap. Nauchn. Sem. LOMI, 176 (1989),  127–150
  38. Efficient factorization of polynomials over local fields

    Dokl. Akad. Nauk SSSR, 293:5 (1987),  1073–1077
  39. Fast factorization of polynomials into irreducible ones and the solution of systems of algebraic equations

    Dokl. Akad. Nauk SSSR, 275:6 (1984),  1302–1306
  40. Polynomial-time factoring of polynomials and finding the compounds of a variety within the aubexponential time

    Zap. Nauchn. Sem. LOMI, 137 (1984),  124–188
  41. On the number of generators of a semigroup of classes of algebraic tori relative to stable equivalence

    Dokl. Akad. Nauk SSSR, 242:5 (1978),  1027–1029
  42. Rationality of a class of tori

    Trudy Mat. Inst. Steklov., 148 (1978),  27–29
  43. Birational equivalence of tori with a cyclic splitting field

    Zap. Nauchn. Sem. LOMI, 64 (1976),  153–158


© Steklov Math. Inst. of RAS, 2025