|
|
Publications in Math-Net.Ru
-
On the structure of tournaments consisting of only kings
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 154–156
-
Classification of trees whose maximal subtrees are all isomorphic
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 135–137
-
Optimal Graphs with Prescribed Connectivities
Mat. Zametki, 113:3 (2023), 323–331
-
Vertex extensions of $4$-layer graphs and hypercubes
Izv. Saratov Univ. Math. Mech. Inform., 22:4 (2022), 536–548
-
About uniqueness of the minimal $1$-edge extension of hypercube $Q_4$
Prikl. Diskr. Mat., 2022, no. 58, 84–93
-
One family of optimal graphs with prescribed connectivities
Prikl. Diskr. Mat. Suppl., 2022, no. 15, 116–119
-
The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle
Prikl. Diskr. Mat. Suppl., 2022, no. 15, 112–116
-
About the uniqueness of the minimal $1$-edge extension of a hypercube
Prikl. Diskr. Mat. Suppl., 2022, no. 15, 110–112
-
Generation of colored graphs with isomorphism rejection
Izv. Saratov Univ. Math. Mech. Inform., 21:2 (2021), 267–277
-
The construction of all nonisomorphic minimum vertex extensions of the graph by the method of canonical representatives
Izv. Saratov Univ. Math. Mech. Inform., 21:2 (2021), 238–245
-
Finding minimal vertex extensions of a colored undirected graph
University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 4, 106–117
-
The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent $2$
Prikl. Diskr. Mat., 2021, no. 52, 97–104
-
Schemes for constructing minimal vertex $1$-extensions of complete bicolored graphs
Prikl. Diskr. Mat. Suppl., 2021, no. 14, 165–168
-
Regular vertex $1$-extension for $2$-dimension meshes
Prikl. Diskr. Mat. Suppl., 2021, no. 14, 161–163
-
The minimal vertex extensions for colored complete graphs
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:4 (2021), 77–89
-
Construction of all minimal edge extensions of the graph with isomorphism rejection
Izv. Saratov Univ. Math. Mech. Inform., 20:1 (2020), 105–115
-
Constructing all nonisomorphic supergraphs with isomorphism rejection
Prikl. Diskr. Mat., 2020, no. 48, 82–92
-
On the optimality of graph implementations with prescribed connectivities
Prikl. Diskr. Mat. Suppl., 2020, no. 13, 103–105
-
Construction of all nonisomorphic minimal vertex extensions of the graph by the method of canonical representatives
Izv. Saratov Univ. Math. Mech. Inform., 19:4 (2019), 479–486
-
Comparison of sufficient degree based conditions for Hamiltonian graph
Prikl. Diskr. Mat., 2019, no. 45, 55–63
-
About a criterion of equality to 3 for exponent of regular primitive graph
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 182–185
-
On the generation of minimal graph extensions by the method of canonical representatives
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 179–182
-
About non-isomorphic graph colouring generating by Read–Faradzhev method
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 173–176
-
On a Goodman–Hedetniemi sufficient condition for the graph Hamiltonicity
Izv. Saratov Univ. Math. Mech. Inform., 18:3 (2018), 347–353
-
About the maximum number of vertices in primitive regular graphs with exponent 3
Prikl. Diskr. Mat. Suppl., 2018, no. 11, 112–114
-
About minimal $1$-edge extension of hypercube
Prikl. Diskr. Mat. Suppl., 2018, no. 11, 109–111
-
On minimal vertex $1$-extensions of path orientation
Prikl. Diskr. Mat., 2017, no. 38, 89–94
-
About generation of non-isomorphic vertex $k$-colorings
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 136–138
-
Upper and lower bounds of the number of additional arcs in a minimal edge $1$-extension of oriented path
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 134–136
-
About primitive regular graphs with exponent 2
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 131–134
-
Refinement of lower bounds for the number of additional arcs in a minimal vertex $1$-extension of oriented path
Prikl. Diskr. Mat. Suppl., 2016, no. 9, 101–102
-
Number estimation for additional arcs in a minimal $1$-vertex extension of tournament
Prikl. Diskr. Mat. Suppl., 2015, no. 8, 111–113
-
Characterization of graphs with a small number of additional arcs in a minimal $1$-vertex extension
Izv. Saratov Univ. Math. Mech. Inform., 13:2(2) (2013), 3–9
-
Characterization of graphs with three additional edges in a minimal $1$-vertex extension
Prikl. Diskr. Mat., 2013, no. 3(21), 68–75
-
About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path
Prikl. Diskr. Mat. Suppl., 2013, no. 6, 71–72
-
On the number of additional edges of a minimal vertex 1-extension of a starlike tree
Izv. Saratov Univ. Math. Mech. Inform., 12:2 (2012), 103–113
-
Characterization of graphs with a given number of additional edges in a minimal 1-vertex extension
Prikl. Diskr. Mat., 2012, no. 1(15), 111–120
-
On digraphs with a small number of arcs in a minimal $1$-vertex extension
Prikl. Diskr. Mat. Suppl., 2012, no. 5, 86–88
-
On the number of minimal vertex and edge $1$-extensions of cycles
Prikl. Diskr. Mat. Suppl., 2012, no. 5, 84–86
-
On a counterexample to a minimal vertex $1$-extension of starlike trees
Prikl. Diskr. Mat. Suppl., 2012, no. 5, 83–84
-
Minimal vertex extensions of directed stars
Diskr. Mat., 23:2 (2011), 93–102
-
On lower bound of edge number of minimal edge 1-extension of starlike tree
Izv. Saratov Univ. Math. Mech. Inform., 11:3(2) (2011), 111–117
-
On properties of minimal extensions of orgraphs
Prikl. Diskr. Mat., 2011, no. supplement № 4, 84–85
-
On minimal edge 1-extensions of two special form trees
Prikl. Diskr. Mat., 2011, no. supplement № 4, 83–84
-
On the uniqueness of exact vertex extensions
Prikl. Diskr. Mat., 2011, no. supplement № 4, 81–82
-
Minimal extensions for cycles with vertices of two types
Prikl. Diskr. Mat., 2011, no. supplement № 4, 80–81
-
Reliability analysis of graphical CAPTCHA-systems by the example of KCAPTCHA
Prikl. Diskr. Mat., 2011, no. supplement № 4, 40–41
-
On minimal vertex 1-extensions of special type graph union
Prikl. Diskr. Mat., 2011, no. 4(14), 34–41
-
Minimal edge extensions of oriented and directed stars
Prikl. Diskr. Mat., 2011, no. 2(12), 77–89
-
On directed acyclic exact extensions
Izv. Saratov Univ. Math. Mech. Inform., 10:1 (2010), 83–88
-
On the Complexity of Some Problems Related to Graph Extensions
Mat. Zametki, 88:5 (2010), 643–650
-
On minimal vertex 1-extensions of special form superslim trees
Prikl. Diskr. Mat., 2010, no. supplement № 3, 68–70
-
On minimal edge $k$-extensions of oriented stars
Prikl. Diskr. Mat., 2010, no. supplement № 3, 67–68
-
Minimal edge extensions of some precomplete graphs
Prikl. Diskr. Mat., 2010, no. 1(7), 105–117
-
About reconstruction of small tournaments
Izv. Saratov Univ. Math. Mech. Inform., 9:2 (2009), 94–98
-
Computational complexity of graph extensions
Prikl. Diskr. Mat., 2009, no. supplement № 1, 94–95
-
Семейства точных расширений турниров
Prikl. Diskr. Mat., 2008, no. 1(1), 101–107
-
Some questions on minimal extensions of graphs
Izv. Saratov Univ. Math. Mech. Inform., 6:1-2 (2006), 86–91
-
Minimal $k$-extensions of precomplete graphs
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 6, 3–11
-
On the number of optimal $1$-hamiltonian graphs with the number of vertices up to $26$ and $28$
Prikl. Diskr. Mat. Suppl., 2016, no. 9, 103–105
© , 2024