RUS  ENG
Full version
PEOPLE

Fedorov Vladimir Mikhajlovich

Publications in Math-Net.Ru

  1. Chebyshev subspaces of Dirichlet series

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 6,  17–23
  2. Излучательно-измерительный комплекс для исследования прохождения сверхширокополосных сигналов в атмосфере и ионосфере Земли

    TVT, 59:6 (2021),  877–884
  3. Approximative properties of proximal subspaces of infinite dimension

    Meždunar. nauč.-issled. žurn., 2019, no. 5(83),  6–10
  4. On the best approximation by absolutely monotonic functions on semiaxis

    Meždunar. nauč.-issled. žurn., 2019, no. 4(82),  23–26
  5. A characteristic of the space of orbital complex-valued functions on a compactum

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 3,  19–32
  6. Representation of Complex Banach Spaces as Spaces of Continuous Functions on a Compact Space

    Mat. Zametki, 93:2 (2013),  316–320
  7. Representation of relatively uniform and order convergence topologies by an inductive limit

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 5,  9–20
  8. Characterization of Chebyshev cones of finite dimension or finite codimension

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 6,  9–25
  9. Factor normal wedges of semi-ordered spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 4,  26–36
  10. Uniqueness of majorants of linear functional

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 5,  25–33
  11. On the uniqueness of the Chebyshev approximation

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 4,  31–36
  12. Approximation of functions on a sphere. II

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 2,  30–38
  13. Approximation of functions on a sphere

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 1,  15–23
  14. On Jackson theorems for the generalized modulus of smoothness

    Trudy Mat. Inst. Steklov., 172 (1985),  291–298
  15. Approximation by algebraic polynomials with Chebyshev–Hermitian weight

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 6,  55–63
  16. Constructive characterization of functions that satisfy the Lipschitz condition on the half axis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 2,  64–69
  17. Haken’s algorithm is primitive recursive

    Dokl. Akad. Nauk SSSR, 226:4 (1976),  787–788

  18. Mikhail Konstantinovich Potapov (on his 90th birthday)

    Uspekhi Mat. Nauk, 76:2(458) (2021),  185–186


© Steklov Math. Inst. of RAS, 2024