RUS  ENG
Full version
PEOPLE

Posypkin Mikhail Anatol'evich

Publications in Math-Net.Ru

  1. Efficiency of the reduction algorithms in the bin packing problem

    Sistemy i Sredstva Inform., 33:3 (2023),  61–75
  2. Approximation of the set of solutions of systems of nonlinear inequalities using graphic accelerators

    Inform. Primen., 14:3 (2020),  20–25
  3. Multi-start method with deterministic restart mechanism

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:2 (2020),  100–111
  4. Effective parallelization strategy for the solution of subset sum problems by the branch-and-bound method

    Diskr. Mat., 31:4 (2019),  20–37
  5. Complexity of solving the Subset Sum problem with the branch-and-bound method with domination and cardinality filtering

    Avtomat. i Telemekh., 2017, no. 3,  96–110
  6. On the best choice of a branching variable in the subset sum problem

    Diskr. Mat., 29:1 (2017),  51–58
  7. Finding sets of solutions to systems of nonlinear inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017),  1248–1254
  8. Application of optimization methods for finding equilibrium states of two-dimensional crystals

    Zh. Vychisl. Mat. Mat. Fiz., 56:12 (2016),  2032–2041
  9. Load balancing in solving problems based on estimates of the computational complexity of subproblems

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2015, no. 1,  10–18
  10. Method of non-uniform coverages to solve the multicriteria optimization problems with guaranteed accuracy

    Avtomat. i Telemekh., 2014, no. 6,  49–68
  11. CluBORun: tool for utilizing idle resources of computing clusters in BOINC computing

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2014, no. 4,  3–11
  12. Optimization methods as applied to parametric identification of interatomic potentials

    Zh. Vychisl. Mat. Mat. Fiz., 54:12 (2014),  1994–2001
  13. Constructing decomposition sets for distributed solution of sat problems in volunteer computing project sat@home

    UBS, 43 (2013),  138–156
  14. Nonuniform covering method as applied to multicriteria optimization problems with guaranteed accuracy

    Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013),  209–224
  15. An algorithm for regions extraction with corrupted ridge and valley structure

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2012, no. 1,  52–59
  16. Using volunteer computation to solve cryptographic problems

    Prikl. Diskr. Mat. Suppl., 2012, no. 5,  107–108
  17. An application of the nonuniform covering method to global optimization of mixed integer nonlinear problems

    Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011),  1376–1389
  18. On a lower bound on the computational complexity of a parallel implementation of the branch-and-bound method

    Avtomat. i Telemekh., 2010, no. 10,  156–166
  19. Upper and lower bounds for the complexity of the branch and bound method for the knapsack problem

    Diskr. Mat., 22:1 (2010),  58–73
  20. Асимптотическая оценка сложности метода ветвей и границ с ветвлением по дробной переменной для задачи о ранце

    Diskretn. Anal. Issled. Oper., 15:1 (2008),  58–81
  21. Application of parallel heuristic algorithms for speeding up parallel implementations of the branch-and-bound method

    Zh. Vychisl. Mat. Mat. Fiz., 47:9 (2007),  1524–1537
  22. Speedup estimates for some variants of the parallel implementations of the branch-and-bound method

    Zh. Vychisl. Mat. Mat. Fiz., 46:12 (2006),  2289–2304
  23. Investigation of algorithms for parallel computations in knapsack-type discrete optimization problems

    Zh. Vychisl. Mat. Mat. Fiz., 45:10 (2005),  1801–1809
  24. Mathematical modeling of a supernova explosion on a parallel computer

    Zh. Vychisl. Mat. Mat. Fiz., 44:5 (2004),  953–960
  25. On closed classes containing precomplete classes of the set of all one-place functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 4,  58–59


© Steklov Math. Inst. of RAS, 2024