RUS  ENG
Full version
PEOPLE

Golikov Aleksandr Il'ich

Publications in Math-Net.Ru

  1. Newton-type method for solving systems of linear equations and inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 59:12 (2019),  2086–2101
  2. Projective-dual method for solving systems of linear equations with nonnegative variables

    Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018),  169–180
  3. A new class of theorems of the alternative

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  44–49
  4. On an inverse linear programming problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  13–19
  5. Regularization and normal solutions of systems of linear equations and inequalities

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  113–121
  6. Generalized Newton method for linear optimization problems with inequality constraints

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  98–108
  7. Sensitivity function: Properties and applications

    Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011),  2126–2142
  8. Parallel implementation of Newton's method for solving large-scale linear programs

    Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009),  1369–1384
  9. Finding the projection of a given point on the set of solutions of a linear programming problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008),  33–47
  10. On families of hyperplanes that separate polyhedra

    Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005),  238–253
  11. Application of Newton's method for solving large linear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 44:9 (2004),  1564–1573
  12. Theorems on alternatives and their applications to numerical methods

    Zh. Vychisl. Mat. Mat. Fiz., 43:3 (2003),  354–375
  13. Two parametric families of LP problems and their applications

    Trudy Inst. Mat. i Mekh. UrO RAN, 8:1 (2002),  31–44
  14. Application of theorems on the alternative to the determination of normal solutions of linear systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 12,  21–31
  15. Search for normal solutions in linear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 40:12 (2000),  1766–1786
  16. Characterization of the optimal set of the multicriterion optimization problem

    Zh. Vychisl. Mat. Mat. Fiz., 28:10 (1988),  1461–1474
  17. Two modifications of the linearization method in nonlinear programming

    Zh. Vychisl. Mat. Mat. Fiz., 23:2 (1983),  314–325
  18. Iterative methods for solving non-linear programming problems, using modified Lagrange functions

    Zh. Vychisl. Mat. Mat. Fiz., 20:4 (1980),  874–888
  19. On a class of methods for solving nonlinear programming problems

    Dokl. Akad. Nauk SSSR, 239:3 (1978),  519–522


© Steklov Math. Inst. of RAS, 2024