RUS  ENG
Full version
PEOPLE

Malygina Vera Vladimirovna

Publications in Math-Net.Ru

  1. On asymptotic properties of solutions for differential equations of neutral type

    CMFD, 69:1 (2023),  116–133
  2. Exponential stability and estimates of solutions to systems of functional differential equations

    Mat. Tr., 26:1 (2023),  130–149
  3. The myshkis $3/2$ theorem and its generalizations

    Sibirsk. Mat. Zh., 64:6 (2023),  1248–1262
  4. About exact two-sided estimates for stable solutions to autonomous functional differential equations

    Sibirsk. Mat. Zh., 63:2 (2022),  360–378
  5. Exponent estimation for stable solutions of a certain class of differential-difference equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 12,  67–79
  6. Asymptotic stability for a class of equations of neutral type

    Sibirsk. Mat. Zh., 62:1 (2021),  106–116
  7. Асимптотические свойства решений одного класса дифференциальных уравнений нейтрального типа

    Mat. Tr., 23:2 (2020),  3–49
  8. On asymptotic properties of the Cauchy function for autonomous functional differential equation of neutral type

    Appl. Math. Control Sci., 2020, no. 3,  7–31
  9. On conditions for the oscillation of solutions to a first-order differential equation with aftereffect

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 7,  72–85
  10. Tests for the oscillation of autonomous differential equations with bounded aftereffect

    Sibirsk. Mat. Zh., 60:4 (2019),  815–823
  11. On local asymptotic stability of a model of epidemic process

    Sib. Èlektron. Mat. Izv., 15 (2018),  1301–1310
  12. On the stability of a population dynamics model with delay

    Tambov University Reports. Series: Natural and Technical Sciences, 23:123 (2018),  456–465
  13. Oscillation criterion for autonomous differential equations with bounded aftereffect

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017),  68–73
  14. On local stability of a population dynamics model with three development stages

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4,  35–42
  15. Asymptotics of solutions of difference equations with delays

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 7,  66–82
  16. On stability of a differential equation with aftereffect

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 4,  25–41
  17. On positiveness of the fundamental solution to a difference equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 3,  19–32
  18. On the local stability of a population dynamics model with delay

    Sib. Èlektron. Mat. Izv., 11 (2014),  951–957
  19. Stability of solutions to differential equations with several variable delays. III

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 8,  44–56
  20. Stability of solutions to differential equations with several variable delays. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 7,  3–15
  21. Stability of solutions to differential equations with several variable delays. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 6,  25–36
  22. The test-equation method in investigation of stability of functional differential equations

    Izv. IMI UdGU, 2012, no. 1(39),  90–91
  23. Stability of a linear difference equation and estimation of its fundamental solution

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 12,  30–41
  24. Stability of semi-autonomous difference equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 5,  25–34
  25. Об устойчивости знакоопределенных решений некоторого класса уравнений с последействием

    Matem. Mod. Kraev. Zadachi, 3 (2009),  153–155
  26. Sign-definiteness of solutions and stability of linear differential equations with variable distributed delay

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 8,  73–77
  27. On the exact boundaries of the stability domain of linear differential equations with distributed delay

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 7,  19–28
  28. On the stability of nonautonomous difference equations with several delays

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 3,  18–26
  29. Some conditions for stability of difference equations

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  91–92
  30. Exponential stability of linear differential-difference equations of neutral type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 7,  17–27
  31. Several stability tests for linear autonomous differential equations with distributed delay

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 6,  55–63
  32. On an estimate for the Cauchy matrix of some systems with aftereffect

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 6,  42–44
  33. On the stability of the trivial solution of nonlinear equations with aftereffect

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 6,  20–27
  34. On the stability of the asymptotic properties of solutions of an equation with delay

    Differ. Uravn., 29:8 (1993),  1324–1329
  35. Stability of solutions of some linear differential equations with aftereffec

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 5,  72–85
  36. Some criteria for stability of equations with retarded argument

    Differ. Uravn., 28:10 (1992),  1716–1723
  37. On an exponential estimate for a Cauchy function

    Differ. Uravn., 28:6 (1992),  1082–1084
  38. Well-posedness of linear differential equations with aftereffect in Hilbert spaces

    Differ. Uravn., 28:5 (1992),  901–903
  39. On the asymptotic behavior of the solution of a class of scalar equations with aftereffect

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 12,  80–82
  40. On the stability of some classes of nonlinear equations with aftereffect

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 8,  84–86
  41. Some conditions for the stability of functional-differential equations solved with respect to the derivative

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 7,  46–53
  42. Criteria for the exponential stability of solutions of equations with bounded aftereffect

    Dokl. Akad. Nauk SSSR, 289:1 (1986),  11–14


© Steklov Math. Inst. of RAS, 2025