RUS  ENG
Full version
PEOPLE

Bubenchikov Mikhail Alekseevich

Publications in Math-Net.Ru

  1. Highly accurate representations of van der Waals interactions

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 90,  64–77
  2. State of fullerene C$_{60}$ in a two-component gas mixture

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 87,  59–72
  3. High-precision representations of inertial rotations and louis poinsot instability

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 86,  149–158
  4. Rotation of supermolecules around an intermediate axis of inertia

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 80,  49–58
  5. Exact solution of the fundamental equation of acoustics for a pressure wave developing in two directions

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 79,  5–13
  6. Relative dynamics of shells of a bifullerene complex

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 77,  54–67
  7. Rotations of tori in a liquid crystal structure

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 73,  42–49
  8. Rotations and vibrations of fullerenes in the molecular complex C$_{20}$@C$_{80}$

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 71,  35–48
  9. Determining frequencies of transverse vibrations for crossovers and dead ends of gas pipelines

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68,  95–105
  10. Analytical solution of the Schrödinger integral equation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 67,  5–17
  11. Investigation of a carbon nanofabric permeability

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 57,  62–75
  12. Calculation of the permeability of the stackings of multi-walled nanotubes

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 53,  47–58
  13. On the selective properties of nanoscale bifurcation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 51,  104–116
  14. Differential permeability of a rectangular stacking of nanotubes with open tips

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 48,  49–56
  15. Separation of methane-helium mixture by porous graphite

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 45,  80–87
  16. Theory of the inertial density-measuring sensor for the oil–liquid–gas mixture

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 5(43),  53–63
  17. On the solution of the nonstationary Schrödinger equation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 5(43),  28–34
  18. Modes of interaction between low-energy molecules and open nanotube

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 3(41),  58–64
  19. The wave permeability of a compacted nanoparticle layer

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 3(41),  51–57
  20. Permeability of the tunnel of spherical nanoparticles

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 5(31),  69–75
  21. Motion of carbon nanotubes in the temperature gradient field

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 4(30),  63–70
  22. Contact affect of a rigid element on an elastic cylindrical body

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 3(19),  41–48
  23. Motion of xenon particles in a cyclone chamber

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 1(17),  61–67
  24. Method for minimizing the circuit diffusion in the numerical model of aerodynamics

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 2(14),  79–84
  25. Calculation of aerodynamics vortex chamber

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 1(13),  67–73
  26. Motion of nanotubes in an air medium under the influence of an electromagnetic field

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 4(12),  68–77
  27. On perfect oscillations of nanotubes in the natural magnetic field

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 2(10),  45–52
  28. Motions of ultradispersed particles in a twisted section of a ring channel

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 2(10),  38–44
  29. Conductive liquid flow in charged cylinder under magnetic field

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2009, no. 3(7),  90–98
  30. Formation and destruction of the erythrocytes clots in the vessel with local expansion

    Matem. Mod., 20:1 (2008),  3–15
  31. Mathematical Modeling of Electrolyte Dynamic in Magnetic Field

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2008, no. 2(3),  72–86


© Steklov Math. Inst. of RAS, 2024