|
|
Publications in Math-Net.Ru
-
Ergodicity index of the set of stochastic matrices
Zap. Nauchn. Sem. POMI, 524 (2023), 7–17
-
A New Proof of the Protasov–Voynov Theorem on Semigroups of Nonnegative Matrices
Mat. Zametki, 105:6 (2019), 807–815
-
Indices of imprimitivity of the temporal components of a semigroup of nonnegative matrices
Zap. Nauchn. Sem. POMI, 472 (2018), 17–30
-
Temporal components of a semigroup of nonnegative matrices. A generalization of Minc's theorem on the structure of an irreducible matrix
Zap. Nauchn. Sem. POMI, 463 (2017), 5–12
-
Combinatorial structure of $k$-semiprimitive matrix families
Mat. Sb., 207:5 (2016), 3–16
-
Locally strongly primitive semigroups of nonnegative matrices
Zap. Nauchn. Sem. POMI, 453 (2016), 5–14
-
Combinatorial and spectral properties of semigroups of stochastic matrices
Zap. Nauchn. Sem. POMI, 439 (2015), 13–25
-
Combinatorial properties of entire semigroups of nonnegative matrices
Zap. Nauchn. Sem. POMI, 428 (2014), 13–31
-
On the normal form of a stochastic matrix
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012), 60–72
-
Combinatorial properties of irreducible semigroups of nonnegative matrices
Zap. Nauchn. Sem. POMI, 405 (2012), 13–23
-
The Perron–Frobenius theorem – a proof with the use of Markov chains
Zap. Nauchn. Sem. POMI, 359 (2008), 5–16
-
Permanental compound matrices and Schneider's theorem
Zap. Nauchn. Sem. POMI, 309 (2004), 5–16
© , 2024