|
|
Publications in Math-Net.Ru
-
Special $\mathcal L_n$ that admit nontrivial $J_0$
Tr. Geom. Semin., 23 (1997), 223–230
-
Projective properties of spaces with affine connection that admit absolute parallelism of vectors
Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 5, 91–100
-
Conditions for quasiprojective quasi-Euclidean spaces
Tr. Geom. Semin., 21 (1991), 142–146
-
Generating nets
Tr. Geom. Semin., 20 (1990), 135–146
-
Special fractional-linear integrals of geodesic lines of spaces with affine connection
Tr. Geom. Semin., 19 (1989), 144–151
-
First fractional integrals of equations of geodesic lines of spaces with affine connection
Itogi Nauki i Tekhniki. Ser. Probl. Geom., 16 (1984), 127–153
-
Trajectories for development of vector fields in spaces $A_n$
Tr. Geom. Semin., 16 (1984), 142–152
-
Convergent nets in the spaces $A_n$
Tr. Geom. Semin., 14 (1982), 116–125
-
The Chebyshev covectors of an $n$-dimensional net in the spaces $A_n$
Tr. Geom. Semin., 13 (1981), 120–125
-
The trajectories of convergence of vector fields in the spaces $A_n$
Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 6, 72–79
-
Nets in a Weyl space of dimension two. I
Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 12, 118–124
-
A convergent linear-fractional integral of the geodesics in two-dimensional affinely connected spaces. II
Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 7, 117–118
-
О геодезических векторных полях пространства аффинной связности двух измерений, II
Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 6, 125–127
-
Geodesic vector fields in a two-dimensional space with affine connection of two dimensions. I
Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 5, 124–126
-
The convergence of vector fields, and convergent nets of a space with an affine connection of two dimensions
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 12, 70–78
-
A convergent linear-fractional integral of the geodesics in two-dimensional affinely connected spaces. I
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 8, 106–108
-
Theory of the nongeodesic vector field in affinely connected spaces of two dimensions
Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 12, 29–34
-
The singular geodesic fields of a two-dimension space with affine connection
Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 9, 90–99
-
Weyl spaces of two dimensions that admit an isotropic linear-fractional integral of the geodesics
Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 4, 120–128
-
Linear-fractional integral of the geodesic lines of two-dimensional affinely connected spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 5, 109–115
-
A linear fractional integral of the geodesics in Weyl spaces and Riemannian spaces of two dimensions
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 3, 108–118
-
A linear-fractional integral of the geodesics in quasieuclidean spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 5, 109–116
-
Invariant tests for mobile quasi-Euclidean spaces $\overline W_2$
Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 11, 107–116
-
Invariant criteria for Weyl's Liouville spaces $W_2$ and $\overline W_2$ which admit homogeneous linear integrals of geodesics
Uchenye Zapiski Kazanskogo Universiteta, 126:1 (1966), 117–133
-
Pseudo-linear integral of geodesics in the Weyl geometry
Uchenye Zapiski Kazanskogo Universiteta, 125:1 (1965), 194–200
-
Valentin Ivanovich Shulikovskii (on the occasion of his 60th birthday)
Tr. Geom. Semin., 14 (1982), 5–8
© , 2024