RUS  ENG
Full version
PEOPLE

Yafarov Sh A

Publications in Math-Net.Ru

  1. Special $\mathcal L_n$ that admit nontrivial $J_0$

    Tr. Geom. Semin., 23 (1997),  223–230
  2. Projective properties of spaces with affine connection that admit absolute parallelism of vectors

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 5,  91–100
  3. Conditions for quasiprojective quasi-Euclidean spaces

    Tr. Geom. Semin., 21 (1991),  142–146
  4. Generating nets

    Tr. Geom. Semin., 20 (1990),  135–146
  5. Special fractional-linear integrals of geodesic lines of spaces with affine connection

    Tr. Geom. Semin., 19 (1989),  144–151
  6. First fractional integrals of equations of geodesic lines of spaces with affine connection

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 16 (1984),  127–153
  7. Trajectories for development of vector fields in spaces $A_n$

    Tr. Geom. Semin., 16 (1984),  142–152
  8. Convergent nets in the spaces $A_n$

    Tr. Geom. Semin., 14 (1982),  116–125
  9. The Chebyshev covectors of an $n$-dimensional net in the spaces $A_n$

    Tr. Geom. Semin., 13 (1981),  120–125
  10. The trajectories of convergence of vector fields in the spaces $A_n$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 6,  72–79
  11. Nets in a Weyl space of dimension two. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 12,  118–124
  12. A convergent linear-fractional integral of the geodesics in two-dimensional affinely connected spaces. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 7,  117–118
  13. О геодезических векторных полях пространства аффинной связности двух измерений, II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 6,  125–127
  14. Geodesic vector fields in a two-dimensional space with affine connection of two dimensions. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 5,  124–126
  15. The convergence of vector fields, and convergent nets of a space with an affine connection of two dimensions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 12,  70–78
  16. A convergent linear-fractional integral of the geodesics in two-dimensional affinely connected spaces. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 8,  106–108
  17. Theory of the nongeodesic vector field in affinely connected spaces of two dimensions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 12,  29–34
  18. The singular geodesic fields of a two-dimension space with affine connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 9,  90–99
  19. Weyl spaces of two dimensions that admit an isotropic linear-fractional integral of the geodesics

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 4,  120–128
  20. Linear-fractional integral of the geodesic lines of two-dimensional affinely connected spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 5,  109–115
  21. A linear fractional integral of the geodesics in Weyl spaces and Riemannian spaces of two dimensions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 3,  108–118
  22. A linear-fractional integral of the geodesics in quasieuclidean spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 5,  109–116
  23. Invariant tests for mobile quasi-Euclidean spaces $\overline W_2$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 11,  107–116
  24. Invariant criteria for Weyl's Liouville spaces $W_2$ and $\overline W_2$ which admit homogeneous linear integrals of geodesics

    Uchenye Zapiski Kazanskogo Universiteta, 126:1 (1966),  117–133
  25. Pseudo-linear integral of geodesics in the Weyl geometry

    Uchenye Zapiski Kazanskogo Universiteta, 125:1 (1965),  194–200

  26. Valentin Ivanovich Shulikovskii (on the occasion of his 60th birthday)

    Tr. Geom. Semin., 14 (1982),  5–8


© Steklov Math. Inst. of RAS, 2024