|   |  | 
	
	
	
 
	
  
	
	
        
	  
			Publications in Math-Net.Ru
			
				- 
				Analytical-numerical method for some elliptic boundary value problems with discontinuous coefficient in domains with polyhedral corners
 
 Mat. Zametki, 116:6 (2024),  1204–1217
- 
				Analytical-numerical method for solving the spectral problem in a model of geostrophic ocean currents
 
 Zh. Vychisl. Mat. Mat. Fiz., 64:6 (2024),  992–1007
- 
				Conformal mapping of a $\mathbb{Z}$-shaped domain
 
 Zh. Vychisl. Mat. Mat. Fiz., 63:12 (2023),  2131–2154
- 
				Analytical-numerical method for analyzing small perturbations of geostrophic ocean currents with a general parabolic vertical profile of velocity
 
 Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022),  2043–2053
- 
				Conformal mapping of an $L$-shaped domain in analytical form
 
 Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022),  1943–1980
- 
				Spectral analysis of small perturbations of geostrophic currents with a parabolic vertical profile of velocity as applied to the ocean
 
 Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021),  2010–2023
- 
				Analytical solution for the cavitating flow over a wedge. II
 
 Zh. Vychisl. Mat. Mat. Fiz., 61:11 (2021),  1873–1893
- 
				Analytical solution for the cavitating flow over a wedge. I
 
 Zh. Vychisl. Mat. Mat. Fiz., 60:12 (2020),  2098–2121
- 
				On the influence of the beta effect on the spectral characteristics of unstable perturbations of ocean currents
 
 Zh. Vychisl. Mat. Mat. Fiz., 60:11 (2020),  1962–1974
- 
				Spectral analysis of model Couette flows in application to the ocean
 
 Zh. Vychisl. Mat. Mat. Fiz., 59:5 (2019),  867–888
- 
				Analytical-numerical method for solving an Orr–Sommerfeld-type problem for analysis of instability of ocean currents
 
 Zh. Vychisl. Mat. Mat. Fiz., 58:6 (2018),  1022–1039
- 
				Computation of zeros of the alpha exponential function
 
 Zh. Vychisl. Mat. Mat. Fiz., 57:6 (2017),  907–920
- 
				Evaluation of eigenvalues and eigenfunctions of Coulomb spheroidal wave equation
 
 Mat. Model., 27:7 (2015),  111–116
- 
				Calculating the branch points of the eigenvalues of the Coulomb spheroidal wave equation
 
 Zh. Vychisl. Mat. Mat. Fiz., 47:11 (2007),  1880–1897
- 
				Numerical analysis of the spectrum of the Orr–Sommerfeld problem
 
 Zh. Vychisl. Mat. Mat. Fiz., 47:10 (2007),  1672–1691
- 
				Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions
 
 Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006),  1195–1210
- 
				Fast computation of elliptic integrals and their generalizations
 
 Zh. Vychisl. Mat. Mat. Fiz., 45:11 (2005),  1938–1953
- 
				A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function
 
 Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005),  574–586
- 
				Methods of analytical continuation of the generalized hypergeometric functions ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};z)$
 
 Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004),  1164–1186
- 
				Padé approximation and numerical analysis for the Riemann $\zeta$-function
 
 Zh. Vychisl. Mat. Mat. Fiz., 43:9 (2003),  1330–1352
- 
				A regularization technique for computing the hypergeometric function $F(a,b;c;z)$in the neighborhood of the singular points $z=1$ and $z=\infty$
 
 Zh. Vychisl. Mat. Mat. Fiz., 41:12 (2001),  1808–1832
- 
				Multipole method for the Dirichlet problem on doubly connected domains of complex geometry: A general description of the method
 
 Zh. Vychisl. Mat. Mat. Fiz., 40:11 (2000),  1633–1647
- 
				Numerical simulation of shock waves with nonunique structure
 
 Zh. Vychisl. Mat. Mat. Fiz., 40:9 (2000),  1408–1415
- 
				On the development of the Trefftz method
 
 Dokl. Akad. Nauk, 337:6 (1994),  713–717
- 
				Some asymptotic formulae for cylindrical Bessel functions
 
 Zh. Vychisl. Mat. Mat. Fiz., 30:12 (1990),  1775–1784
- 
				Multiple complex zeros of the derivatives of cylindrical Bessel
   functions
 
 Dokl. Akad. Nauk SSSR, 299:3 (1988),  614–618
- 
				On the calculation of the multiple complex roots of the derivatives of cylindrical Bessel functions
 
 Zh. Vychisl. Mat. Mat. Fiz., 27:11 (1987),  1628–1639
- 
				Multiple zeros of derivatives of cylindrical Bessel functions
 
 Dokl. Akad. Nauk SSSR, 288:2 (1986),  285–288
- 
				Calculation of eigenvalues of the Mathieu equation with a complex parameter
 
 Zh. Vychisl. Mat. Mat. Fiz., 26:9 (1986),  1350–1361
- 
				Calculation of complex zeros of a modified Bessel function of the
   second kind
 
 Dokl. Akad. Nauk SSSR, 280:2 (1985),  296–299
- 
				Calculation of multiple zeros of derivatives of cylindrical Bessel functions $J_{\nu}(z)$ and $Y_{\nu}(z)$
 
 Zh. Vychisl. Mat. Mat. Fiz., 25:12 (1985),  1749–1760
- 
				Investigation and reduction of the variance of weighted vector algorithms of the Monte Carlo method
 
 Zh. Vychisl. Mat. Mat. Fiz., 25:11 (1985),  1628–1643
- 
				Calculation of complex zeros of the Bessel function of the second kind and its derivatives
 
 Zh. Vychisl. Mat. Mat. Fiz., 25:10 (1985),  1457–1473
- 
				Calculation of complex zeros of Bessel functions $J_\nu(Z)$ and $I_\nu(z)$ and their derivatives
 
 Zh. Vychisl. Mat. Mat. Fiz., 24:10 (1984),  1497–1513
- 
				Calculation of complex zeros of a modified Bessel function of the second kind and its derivatives
 
 Zh. Vychisl. Mat. Mat. Fiz., 24:8 (1984),  1150–1163
- 
				Calculation of modified Bessel functions in the complex domain
 
 Zh. Vychisl. Mat. Mat. Fiz., 24:5 (1984),  650–664
						- 
				Bifurcation: analysis, algorithms, applications. Ed. Êupper Ò., Seódel R., Troger H. Basel: Birkhäuser Verlag, 1987. VIII+359p. (Book review)
 
 Zh. Vychisl. Mat. Mat. Fiz., 27:10 (1987),  1595
- 
				Corrections: "Calculation of eigenvalues of the Mathieu equation with a complex parameter"
 
 Zh. Vychisl. Mat. Mat. Fiz., 27:5 (1987),  796
 
				
	
	
	
	© , 2025