RUS  ENG
Full version
PEOPLE

Kuznetsov Alexander Alexeevich

Publications in Math-Net.Ru

  1. On one representation of elements of finite $2$-groups in the form of Boolean vectors

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  129–131
  2. Some subgroups of the Burnside group $B_0(2,5)$

    Prikl. Diskr. Mat. Suppl., 2021, no. 14,  184–186
  3. Computation of rewriting systems in finite groups

    Prikl. Diskr. Mat. Suppl., 2020, no. 13,  132–134
  4. Computational experiments in finite two generator Burnside groups of exponent five

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  216–218
  5. On applications of the Cayley graphs of some finite groups of exponent five

    J. Sib. Fed. Univ. Math. Phys., 11:1 (2018),  70–78
  6. A resource-efficient algorithm for study the growth in finite two-generator groups of exponent $5$

    Prikl. Diskr. Mat., 2018, no. 42,  94–103
  7. The Cayley graph of a subgroup of the Burnside group $B_0(2,5)$

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  19–21
  8. An algorithm for computation of the growth functions in finite two-generated groups of exponent $5$

    Prikl. Diskr. Mat., 2016, no. 3(33),  116–125
  9. On the growth functions of finite two generator Burnside groups of exponent five

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  132–135
  10. Hall's polynomials over Burnside groups of exponent three

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  147–149
  11. The Cayley graphs of Burnside groups of exponent $3$

    Sib. Èlektron. Mat. Izv., 12 (2015),  248–254
  12. Hall's polynomials of finite two-generator groups of exponent seven

    J. Sib. Fed. Univ. Math. Phys., 7:2 (2014),  186–190
  13. Hall's polynomials for finite two-generator groups of exponent seven

    Prikl. Diskr. Mat. Suppl., 2014, no. 7,  162–164
  14. Fast multiplication in finite two-generated groups of exponent five

    Prikl. Diskr. Mat., 2013, no. 1(19),  110–116
  15. A parallel algorithm for computation of growth functions in the finite two-generator groups of period 5

    Prikl. Diskr. Mat. Suppl., 2013, no. 6,  119–121
  16. About systems of generators of some groups with 3-transpositions

    Sib. Èlektron. Mat. Izv., 10 (2013),  285–301
  17. Groups saturated by sets of groups

    Sib. Èlektron. Mat. Izv., 8 (2011),  230–246
  18. On a subgroup of the Burnside group $B_0(2,5)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  176–180
  19. On an involutive automorphism of the Burnside group $B_0(2,5)$

    Sib. Zh. Ind. Mat., 13:3 (2010),  68–75
  20. On the difference of the Burnside groups $B(2;5)$ and $B_0(2;5)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010),  133–138
  21. About the centralizer of an automorphism of order 2 of Burnside group $B_0(2,5)$

    Vladikavkaz. Mat. Zh., 12:4 (2010),  44–48
  22. Comparative analysis of the Burnside groups $B(2,5)$ and $B_0(2,5)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  125–132
  23. A General Algorithm of Modeling of Periodic Groups

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009),  47–54
  24. Recognizability by spectrum of the group $L_2(7)$

    Sib. Èlektron. Mat. Izv., 4 (2007),  136–140
  25. On the definability of the group $L_2(7)$ by its spectrum

    Sib. Èlektron. Mat. Izv., 2 (2005),  250–252


© Steklov Math. Inst. of RAS, 2024