RUS  ENG
Full version
PEOPLE

Molotkov Ivan Anatol'evich

Publications in Math-Net.Ru

  1. Longitudinal finite-amplitude wave in nonlinear homogeneous elastic medium. The equations of Landau-Murnaghan

    Dal'nevost. Mat. Zh., 16:2 (2016),  160–168
  2. High-temperature processes in a porous medium

    TVT, 47:2 (2009),  242–246
  3. Bright and dark pulses in optical fibres in the vicinity of the zero-dispersion wavelength

    Kvantovaya Elektronika, 34:2 (2004),  161–164
  4. Asymptotic solutions of the Hartree equation that are concentrated, as $h\to 0$, in a small neighborhood of a curve

    Dokl. Akad. Nauk, 345:6 (1995),  743–745
  5. Nonlinear evolution of the quasi-longitudinal waves in a viscoelastic rock mass

    Dokl. Akad. Nauk, 336:6 (1994),  820–822
  6. Stationary wave baems in strongly nonlinear three-dimensional and inhomogeneous medium

    Zap. Nauchn. Sem. LOMI, 148 (1985),  52–60
  7. Waves in the linear inhomogeneous medium concentrated in the vicinity of a given curve

    Dokl. Akad. Nauk SSSR, 262:3 (1982),  587–591
  8. Local resonance interaction of normal waves in a system containing connected waveguides

    Dokl. Akad. Nauk SSSR, 254:2 (1980),  327–331
  9. Nonlinear longitudinal waves in inhomogeneous rods

    Zap. Nauchn. Sem. LOMI, 99 (1980),  64–73
  10. Ungtationary modes in a thin and curved waveguide of variable width

    Zap. Nauchn. Sem. LOMI, 89 (1979),  210–218
  11. Local degeneration of waves in a thin waveguide

    Zap. Nauchn. Sem. LOMI, 78 (1978),  138–148
  12. The Behaviour of the Guided Waves in the Neughbourhood of the Cut-Off Section

    Zap. Nauchn. Sem. LOMI, 42 (1974),  181–188
  13. The surface wave caused by a thin layer with a small propagation velocity

    Zap. Nauchn. Sem. LOMI, 34 (1973),  93–102
  14. Excitution of the Rayleigh and Stoneley waves

    Zap. Nauchn. Sem. LOMI, 17 (1970),  168–183
  15. Excitation of the surface-wave for the case of diffraction on the impedance contour

    Zap. Nauchn. Sem. LOMI, 17 (1970),  151–167
  16. Green's function for the diffraction problem on a convex cylinder with variable impedance

    Trudy Mat. Inst. Steklov., 95 (1968),  119–131
  17. Nonstationary wave propagation velocity minimum

    Trudy Mat. Inst. Steklov., 92 (1966),  165–181
  18. Nonstationary distribution of waves in the region of the geometric shadow in an inhomogeneous medium

    Dokl. Akad. Nauk SSSR, 140:3 (1961),  557–559
  19. Investigation of exact solutions of time-dependent diffraction problems in the neighborhood of slide-off fronts

    Dokl. Akad. Nauk SSSR, 134:5 (1960),  1051–1054

  20. Letter to the editors: “Local degeneration of waves in a thin waveguide” (Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 78 (1978), 138–148)

    Zap. Nauchn. Sem. LOMI, 89 (1979),  286


© Steklov Math. Inst. of RAS, 2024