RUS  ENG
Full version
PEOPLE

Fryazinov Igor' Vladimirovich

Publications in Math-Net.Ru

  1. Method of adaptive artificial viscosity for solving the Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 55:8 (2015),  1356–1362
  2. Shock wave reflection from the axis of symmetry in a nonuniform flow with the formation of a circulatory flow zone

    Matem. Mod., 25:8 (2013),  33–50
  3. Method of adaptive artificial viscosity for the equations of gas dynamics on triangular and tetrahedral grids

    Matem. Mod., 24:6 (2012),  109–127
  4. Finite-difference method for computation of the 3-D gas dynamics equations with artificial viscosity

    Matem. Mod., 23:3 (2011),  89–100
  5. About the new choice of adaptive artificial viscosity

    Matem. Mod., 22:12 (2010),  23–32
  6. Method adaptive artificial viscosity

    Matem. Mod., 22:7 (2010),  121–128
  7. Calculations of bidimentional test problems by a method of adaptive artificial viscosity

    Matem. Mod., 22:5 (2010),  57–66
  8. Adaptive artificial viscosity for gas dynamics for the Euler variables in Cartesian coordinates

    Matem. Mod., 22:1 (2010),  32–45
  9. Difference schemes on triangular and tetrahedral grids of Navier–Stokes equations for an incompressible fluid

    Matem. Mod., 21:10 (2009),  94–106
  10. Finite-difference method for computation of the gas dynamics equations with artificial viscosity

    Matem. Mod., 20:8 (2008),  48–60
  11. Mathematical modeling of convective diffusion processes in a multicomponent incompressible medium with chemical transformations and phase transitions

    Differ. Uravn., 35:3 (1999),  396–402
  12. Boundary conditions for radiative heat transfer in monocrystal growth in processes in ampules. II. A semitransparent quartz ampule, Bridgman's method, and the traveling-heater method

    Zh. Vychisl. Mat. Mat. Fiz., 37:11 (1997),  1384–1398
  13. Boundary conditions of radiative heat transfer for monocrystal growth in ampoules. I. Opaque ampoule

    Zh. Vychisl. Mat. Mat. Fiz., 37:9 (1997),  1143–1152
  14. The KARMA-1 program complex for solving time-dependent problems of crystal growth in ampoules

    Zh. Vychisl. Mat. Mat. Fiz., 37:8 (1997),  988–998
  15. Crystal growth in magnetic field when the current passed through the melt

    Matem. Mod., 8:11 (1996),  76–86
  16. On the dopant distribution along the crystal length in Czochralski growth

    Matem. Mod., 8:7 (1996),  55–73
  17. Monotone corrective terms and coupled algorithm for Navier–Stokes equations of an incompressible flow

    Matem. Mod., 6:12 (1994),  97–116
  18. The approximation 2D elliptic and parabolic equations on the pair connected irregular grids

    Matem. Mod., 6:4 (1994),  53–64
  19. Two-dimensional model of heat and mass transfer of casting under pressure into thin cavity molds

    Matem. Mod., 5:9 (1993),  55–79
  20. Numerical modeling of the crystal growth by uncrucible zone fusion method

    Matem. Mod., 5:3 (1993),  59–73
  21. Mathematical modelling of the crystal growth from solution-melt by travelling heater method

    Matem. Mod., 4:5 (1992),  67–79
  22. Numerical simulation of the external temperature and magnetic field influences on the interface form in the vertical directional crystallization technique

    Matem. Mod., 4:2 (1992),  21–35
  23. Numerical methods of solving the problem of the injection of plastic into thin moulds under pressure

    Zh. Vychisl. Mat. Mat. Fiz., 32:11 (1992),  1790–1802
  24. The difference method for solving three-dimensional Navier–Stokes equations in a parallelepiped

    Differ. Uravn., 27:7 (1991),  1137–1144
  25. Approximation and numerical method for three-dimensional Navier-Stokes equations solving by using of orthogonal grids

    Matem. Mod., 3:5 (1991),  89–109
  26. Difference schemes on a nine-point “cross” pattern for solving the Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 28:6 (1988),  867–878
  27. A difference method for solving the Stefan problem for a binary system

    Differ. Uravn., 23:7 (1987),  1188–1197
  28. A difference method for solving Navier–Stokes equations in vorticity-stream function variables

    Differ. Uravn., 21:7 (1985),  1269–1273
  29. Convergence of difference schemes for the two-dimensional Navier–Stokes equations for an incompressible fluid in vortex-flow function-angular velocity variables

    Differ. Uravn., 20:7 (1984),  1203–1213
  30. Conservative difference schemes for Navier–Stokes equations in vortex-stream function-torque variables on irregular triangular grids

    Differ. Uravn., 19:7 (1983),  1276–1284
  31. Conservative monotone difference schemes for Navier–Stokes equations

    Differ. Uravn., 18:7 (1982),  1144–1150
  32. Conservative difference schemes for equations of an incompressible viscous fluid in curvilinear orthogonal coordinates

    Zh. Vychisl. Mat. Mat. Fiz., 22:5 (1982),  1195–1207
  33. Conservative difference schemes for the equations of an incompressible viscous fluid in Euler variables

    Zh. Vychisl. Mat. Mat. Fiz., 21:5 (1981),  1180–1191
  34. The balance method and variational-difference schemes

    Differ. Uravn., 16:7 (1980),  1332–1343
  35. Difference schemes for the Laplace equation in step-domains

    Zh. Vychisl. Mat. Mat. Fiz., 18:5 (1978),  1170–1185
  36. The exactness of the scheme of variable directions for the heat equation in an arbitrary domain

    Differ. Uravn., 12:10 (1976),  1906–1914
  37. A certain difference approximation of the Poisson equation

    Differ. Uravn., 12:3 (1976),  540–548
  38. Difference approximation methods for problems of mathematical physics

    Uspekhi Mat. Nauk, 31:6(192) (1976),  167–197
  39. Economical difference schemes for a two-dimensional heat equation with mixed derivatives

    Zh. Vychisl. Mat. Mat. Fiz., 16:4 (1976),  908–921
  40. A difference approximation of problems for an elliptic equation

    Zh. Vychisl. Mat. Mat. Fiz., 16:1 (1976),  102–118
  41. A certain approximation of mixed derivatives

    Zh. Vychisl. Mat. Mat. Fiz., 15:3 (1975),  644–660
  42. A certain class of schemes for equations of parabolic type

    Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975),  113–125
  43. The alternating-direction iteration method for Poisson's difference equation in curvilinear orthogonal coordinates

    Zh. Vychisl. Mat. Mat. Fiz., 13:4 (1973),  907–922
  44. Economic schemes for a modification of the third boundary value problem

    Zh. Vychisl. Mat. Mat. Fiz., 13:2 (1973),  356–364
  45. Economical schemes for a multidimensional heat equation with discontinuous coefficients

    Zh. Vychisl. Mat. Mat. Fiz., 13:1 (1973),  80–91
  46. Solution of the Percus–Yevick equations and thermodynamic functions of a dense gas at subcritical temperatures

    Prikl. Mekh. Tekh. Fiz., 13:2 (1972),  111–118
  47. The convergence of additive schemes with equations on graphs

    Zh. Vychisl. Mat. Mat. Fiz., 12:5 (1972),  1208–1219
  48. Economic schemes for the equation of heat conduction with a boundary condition of the third kind

    Zh. Vychisl. Mat. Mat. Fiz., 12:3 (1972),  612–626
  49. Efficient difference schemes for the solution of the heat equation in polar, cylindrical and spherical coordinates

    Zh. Vychisl. Mat. Mat. Fiz., 12:2 (1972),  352–363
  50. Difference schemes for the Poisson equation in polar, cylindrical and spherical coordinate systems

    Zh. Vychisl. Mat. Mat. Fiz., 11:5 (1971),  1219–1228
  51. On the convergence of a locally one-dimensional scheme for solving the multidimensional equation of heat conduction on non-uniform meshes

    Zh. Vychisl. Mat. Mat. Fiz., 11:3 (1971),  642–657
  52. A high-order accuracy scheme for the solution of the third boundary value problem for the equation $\Delta u-qu=-f$ in a rectangle

    Zh. Vychisl. Mat. Mat. Fiz., 11:2 (1971),  515–517
  53. Difference schemes for the solution of the Dirichlet problem in an arbitrary domain for an elliptic equation with variable coefficients

    Zh. Vychisl. Mat. Mat. Fiz., 11:2 (1971),  385–410
  54. An algorithm for the solution of difference problems on graphs

    Zh. Vychisl. Mat. Mat. Fiz., 10:2 (1970),  474–477
  55. Economic schemes for increasing the order of accuracy when solving multidimensional parabolic equations

    Zh. Vychisl. Mat. Mat. Fiz., 9:6 (1969),  1316–1326
  56. A priori estimates for a certain family of efficient schemes

    Zh. Vychisl. Mat. Mat. Fiz., 9:3 (1969),  595–604
  57. Economical symmetrization schemes for solving boundary value problems for a multi-dimensional equation of parabolic type

    Zh. Vychisl. Mat. Mat. Fiz., 8:2 (1968),  436–443
  58. The solution of the third boundary value problem for the two-dimensional heat conduction equation in an arbitrary region by a locally one-dimensional method

    Zh. Vychisl. Mat. Mat. Fiz., 6:3 (1966),  487–502
  59. Difference approximation of the boundary conditions for the third boundary value problem

    Zh. Vychisl. Mat. Mat. Fiz., 4:6 (1964),  1106–1112
  60. On the stability of difference schemes for a heat-conduction equation with variable coefficients

    Zh. Vychisl. Mat. Mat. Fiz., 1:6 (1961),  1122–1127
  61. Stefan's problem for non-homogeneous media

    Zh. Vychisl. Mat. Mat. Fiz., 1:5 (1961),  927–932
  62. On the convergence of difference schemes for a heat-conduction equation with discontinuous coefficients

    Zh. Vychisl. Mat. Mat. Fiz., 1:5 (1961),  806–824


© Steklov Math. Inst. of RAS, 2024