RUS  ENG
Full version
PEOPLE

Ivandaev Aleksei Ivanovich

Publications in Math-Net.Ru

  1. Numerical investigation of throwing a powder layer by a compressed gas

    Fizika Goreniya i Vzryva, 31:4 (1995),  63–70
  2. Explosive generation of heterogeneous detonation waves in aerocolloids of a unitary fuel

    Fizika Goreniya i Vzryva, 31:3 (1995),  83–91
  3. Mathematical simulation of shock waves processes in chemical inert and reacting polydisperse mixtures of gas and solid particles

    Matem. Mod., 7:12 (1995),  19–32
  4. Detonation waves in polydisperse gas suspensions of unitary fuel having a continuous particle size distribution function

    Prikl. Mekh. Tekh. Fiz., 36:6 (1995),  14–24
  5. Propagation of nonstationary shock waves in two-phase gas-dust-droplet mixtures

    TVT, 32:5 (1994),  732–737
  6. Influence of collisions of small particles with large particles on the propagation of shock waves in two-phase, two-fraction aerosols

    Prikl. Mekh. Tekh. Fiz., 34:5 (1993),  35–40
  7. Effect of polydispersion on sound propagation in gas mixtures with vapor and liquid drops

    Prikl. Mekh. Tekh. Fiz., 34:4 (1993),  75–83
  8. Propagation of acoustic disturbances in polydispersed fogs

    TVT, 30:6 (1992),  1162–1168
  9. Effect of non-monotone dependence of sound attenuation on the concentration of droplets

    Dokl. Akad. Nauk SSSR, 316:3 (1991),  601–605
  10. Wave propagation in three-phase mixtures of a gas with particles and liquid drops

    Prikl. Mekh. Tekh. Fiz., 32:4 (1991),  74–81
  11. Dynamics of low-amplitude pulse waves in vapor-gas-drop systems

    Prikl. Mekh. Tekh. Fiz., 32:2 (1991),  106–113
  12. Shock wave structure in a gas suspension of liquid drops and fine solid particles

    TVT, 29:6 (1991),  1192–1197
  13. Characteristic times of phase interaction processes and their effect on dispersion and absorption of sound waves in vapor–gas–drop systems

    TVT, 29:1 (1991),  121–127
  14. Influence of phase transitions on sound propagation in fogs: Comparison of theory with experiment

    Prikl. Mekh. Tekh. Fiz., 31:6 (1990),  27–34
  15. Method of calculating the flow of a vapor-drop mixture about bodies in the presence of fragmentation and vaporization effects

    Prikl. Mekh. Tekh. Fiz., 29:6 (1988),  126–133
  16. Sound propagation in polydispersed gas suspensions

    Prikl. Mekh. Tekh. Fiz., 29:5 (1988),  115–124
  17. Results of a study of the effect of drop fragmentation on the structure of shock waves in gas-drop mixtures

    Prikl. Mekh. Tekh. Fiz., 29:3 (1988),  48–54
  18. Structure of shock waves in two-phase mixtures of a gas with fluid drops

    Prikl. Mekh. Tekh. Fiz., 29:2 (1988),  99–107
  19. Influence of the breakup and evaporation of drops on $2$-phase flow around a body

    TVT, 26:6 (1988),  1189–1194
  20. Effect of phase transitions on shock wave structure in a vapor-drop mix

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 3,  81–85
  21. Speed and attenuation of sound in gas-vapor-liquid systems. Role of heat and mass exchange

    Prikl. Mekh. Tekh. Fiz., 28:3 (1987),  115–123
  22. Nonsteady discharge of liquified hydrocarbons in the rupture of pipelines

    TVT, 24:2 (1986),  295–300
  23. Singularities of high-frequency acoustic perturbation propagation in steam and gas suspensions

    Prikl. Mekh. Tekh. Fiz., 26:6 (1985),  73–81
  24. Determination of characteristic dynamic and thermal interaction times in problems of gas suspension wave dynamics

    Prikl. Mekh. Tekh. Fiz., 26:2 (1985),  102–106
  25. Influence of screening gas-suspension layers on shock-wave reflection

    Prikl. Mekh. Tekh. Fiz., 26:1 (1985),  115–120
  26. Effect of transients on momentum and heat-exchange between phases of a gas suspension in shock-waves

    TVT, 23:4 (1985),  721–725
  27. Certain laws of the evolution of plane and spherical shock-waves in gaseous suspensions

    TVT, 23:3 (1985),  506–512
  28. Interface heat transfer coefficients in two-phase dispersed media subjected to acoustic fields

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 1,  63–67
  29. Flow in a shock tube in the presence of suspended particles

    Fizika Goreniya i Vzryva, 20:3 (1984),  105–111
  30. On the influence of the unsteady phase interaction effects with the dispersion and attenuation pf weak waves in particulate suspensions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 5,  60–63
  31. Dispersion and dissipation of acoustic waves in aerosols

    Dokl. Akad. Nauk SSSR, 272:3 (1983),  560–564
  32. Propagation of Weak Perturbations in Vapor-Liquid Dispersed Annular Flows

    TVT, 18:2 (1980),  359–366
  33. Nonsteady shock waves in gas-liquid mixtures of bubble structure

    Prikl. Mekh. Tekh. Fiz., 19:2 (1978),  78–86
  34. О применении термодинамически равновесного подхода к расчету разгерметизации систем высокого давления с жидким теплоносителем

    TVT, 16:6 (1978),  1269–1276
  35. Исследование нестационарного истечения вскипающей жидкости в термодинамически равновесном приближении

    TVT, 16:3 (1978),  556–562
  36. Применение модели дисперсно-кольцевого потока к расчету двухфазных критических течений

    TVT, 15:3 (1977),  573–580
  37. Исследование явления гидродинамического кризиса двухфазного течения

    TVT, 15:1 (1977),  129–136
  38. A modified “large particle” method for the calculation of nonstationary wave processes in multiphase dispersed media

    Zh. Vychisl. Mat. Mat. Fiz., 17:6 (1977),  1531–1544
  39. Unsteady waves in a liquid with gas bubbles

    Dokl. Akad. Nauk SSSR, 226:6 (1976),  1299–1302
  40. Use of a modified large-particle method for solving problems of wave dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 16:4 (1976),  1017–1026
  41. A method of introducing “pseudoviscosity” and its use for improving the difference solutions of hydrodynamic equations

    Zh. Vychisl. Mat. Mat. Fiz., 15:2 (1975),  523–527
  42. Элементарной теории критических (максимальных) расходов двухфазных смесей

    TVT, 10:5 (1972),  1055–1064
  43. Propagation of weak perturbations in two-phase media with phase transitions

    Prikl. Mekh. Tekh. Fiz., 11:5 (1970),  73–77


© Steklov Math. Inst. of RAS, 2024