RUS  ENG
Full version
PEOPLE

Duischko Alla L'vovna

Publications in Math-Net.Ru

  1. Singular problem for a third-order nonlinear ordinary differential equation arising in fluid dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 47:7 (2007),  1158–1178
  2. Analytic–numerical investigation of the nonlinear boundary value problem for a superconducting plate in a magnetic field

    Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005),  1651–1676
  3. Multiple self-similar string and monopole solutions to nonlinear wave equations in inflationary cosmology

    Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002),  471–490
  4. Singular problems for Emden-Fowler-type second-order nonlinear ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001),  595–619
  5. Multiple one-dimensional and spherically symmetric self-similar solutions to the nonlinear wave equation for the Higgs field in the de Sitter space

    Zh. Vychisl. Mat. Mat. Fiz., 41:3 (2001),  467–488
  6. Self-similar solutions to the nonlinear wave equation for the Higgs fields in the de Sitter space

    Zh. Vychisl. Mat. Mat. Fiz., 39:1 (1999),  124–140
  7. Nonlinear singular problems in relativistic cosmology. II. The Higgs field in the de Sitter space

    Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997),  1506–1519
  8. Nonsingular problems in relativistic cosmology. I. The Higgs field in the Minkowski and Friedmann spaces

    Zh. Vychisl. Mat. Mat. Fiz., 37:11 (1997),  1345–1361
  9. On a numerical-analytic investigation of problems of the diffraction of a plane sound wave by ideal prolate spheroids and triaxial ellipsoids

    Zh. Vychisl. Mat. Mat. Fiz., 35:9 (1995),  1374–1400
  10. A numerical investigation of forced axisymmetric electric oscillations of an ideally conducting prolate spheroid

    Zh. Vychisl. Mat. Mat. Fiz., 35:5 (1995),  753–771
  11. On some multiparameter spectral problems of mathematical physics

    Matem. Mod., 6:6 (1994),  14–21
  12. Computation of radial wave functions for spheroids and triaxial ellipsoids by the modified phase function method

    Zh. Vychisl. Mat. Mat. Fiz., 31:2 (1991),  212–234
  13. Evaluation of angular Lamé wave functions by solving auxiliary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 29:6 (1989),  813–830
  14. Numerical investigations of free electrical axisymmetric oscillations of an ideally conducting prolate spheroid

    Zh. Vychisl. Mat. Mat. Fiz., 29:4 (1989),  535–553
  15. Evaluation of prolate spheroidal function by solving the corresponding differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 24:1 (1984),  3–18
  16. Conical structure of a light beam in a nonlinear homogeneous medium

    Kvantovaya Elektronika, 8:5 (1981),  1101–1103
  17. Double-cone structure of an optical beam in a nonlinear medium

    Kvantovaya Elektronika, 7:11 (1980),  2393–2399
  18. On self-focussing of intense light beams

    Dokl. Akad. Nauk SSSR, 188:4 (1969),  792–794
  19. A difference method for the solution of the equations for the propagation of a light ray in a non-linear medium with combinative dispersion

    Zh. Vychisl. Mat. Mat. Fiz., 9:6 (1969),  1408–1410
  20. Difference method of solving the propagation of a light ray in a non-linear medium

    Zh. Vychisl. Mat. Mat. Fiz., 8:1 (1968),  238–242


© Steklov Math. Inst. of RAS, 2024