|
|
Publications in Math-Net.Ru
-
Singular problem for a third-order nonlinear ordinary differential equation arising in fluid dynamics
Zh. Vychisl. Mat. Mat. Fiz., 47:7 (2007), 1158–1178
-
Analytic–numerical investigation of the nonlinear boundary value problem for a superconducting plate in a magnetic field
Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005), 1651–1676
-
Multiple self-similar string and monopole solutions to nonlinear wave equations in inflationary cosmology
Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002), 471–490
-
Singular problems for Emden-Fowler-type second-order nonlinear ordinary differential equations
Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001), 595–619
-
Multiple one-dimensional and spherically symmetric self-similar solutions to the nonlinear wave equation for the Higgs field in the de Sitter space
Zh. Vychisl. Mat. Mat. Fiz., 41:3 (2001), 467–488
-
Self-similar solutions to the nonlinear wave equation for the Higgs fields in the de Sitter space
Zh. Vychisl. Mat. Mat. Fiz., 39:1 (1999), 124–140
-
Nonlinear singular problems in relativistic cosmology. II. The Higgs field in the de Sitter space
Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997), 1506–1519
-
Nonsingular problems in relativistic cosmology. I. The Higgs field in the Minkowski and Friedmann spaces
Zh. Vychisl. Mat. Mat. Fiz., 37:11 (1997), 1345–1361
-
On a numerical-analytic investigation of problems of the diffraction of a plane sound wave by ideal prolate spheroids and triaxial ellipsoids
Zh. Vychisl. Mat. Mat. Fiz., 35:9 (1995), 1374–1400
-
A numerical investigation of forced axisymmetric electric oscillations of an ideally conducting prolate spheroid
Zh. Vychisl. Mat. Mat. Fiz., 35:5 (1995), 753–771
-
On some multiparameter spectral problems of mathematical physics
Matem. Mod., 6:6 (1994), 14–21
-
Computation of radial wave functions for spheroids and triaxial ellipsoids by the modified phase function method
Zh. Vychisl. Mat. Mat. Fiz., 31:2 (1991), 212–234
-
Evaluation of angular Lamé wave functions by solving auxiliary differential equations
Zh. Vychisl. Mat. Mat. Fiz., 29:6 (1989), 813–830
-
Numerical investigations of free electrical axisymmetric oscillations of an ideally conducting prolate spheroid
Zh. Vychisl. Mat. Mat. Fiz., 29:4 (1989), 535–553
-
Evaluation of prolate spheroidal function by solving the corresponding differential equations
Zh. Vychisl. Mat. Mat. Fiz., 24:1 (1984), 3–18
-
Conical structure of a light beam in a nonlinear homogeneous medium
Kvantovaya Elektronika, 8:5 (1981), 1101–1103
-
Double-cone structure of an optical beam in a nonlinear medium
Kvantovaya Elektronika, 7:11 (1980), 2393–2399
-
On self-focussing of intense light beams
Dokl. Akad. Nauk SSSR, 188:4 (1969), 792–794
-
A difference method for the solution of the equations for the propagation of a light ray in a non-linear medium with combinative dispersion
Zh. Vychisl. Mat. Mat. Fiz., 9:6 (1969), 1408–1410
-
Difference method of solving the propagation of a light ray in a non-linear medium
Zh. Vychisl. Mat. Mat. Fiz., 8:1 (1968), 238–242
© , 2024