|
|
Publications in Math-Net.Ru
-
Geometry of sub–Riemannian manifolds equipped with a semimetric quarter–symmetric connection
Ufimsk. Mat. Zh., 16:2 (2024), 27–36
-
Geometry of almost $3$-quasi-Sasakian manifolds of the second kind
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 222 (2023), 3–9
-
Sub-riemannian quasi-statistical structures on non-holonomic kenmotsu manifolds
Applied Mathematics & Physics, 54:4 (2022), 205–212
-
$\nabla^{N}$-Einstein almost contact metric manifolds
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 70, 5–15
-
Geodesic transformations of distributions of sub-Riemannian manifolds
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020), 14–18
-
Golden ration in geometry of $\eta$-einstein sub-riemannian manifolds with $N-$connection
Applied Mathematics & Physics, 51:4 (2019), 465–474
-
Classification of prolonged bi-metric structures on distributions of non-zero curvature of sub-Riemannian manifolds
Izv. Saratov Univ. Math. Mech. Inform., 18:3 (2018), 263–273
-
Extended structures on codistributions of contact metric manifolds
Izv. Saratov Univ. Math. Mech. Inform., 17:2 (2017), 138–147
-
$N$-extended symplectic connections in almost contact metric spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 3, 15–23
-
On distributions with special quasi-sasakian structure
Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2017, no. 2(39), 6–17
-
Generalized Wagner's curvature tensor of almost contact metric spaces
Chebyshevskii Sb., 17:3 (2016), 53–63
-
Admissible hypercomplex structures on distributions of Sasakian manifolds
Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 263–272
-
Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure
Sibirsk. Mat. Zh., 57:3 (2016), 632–640
-
Almost contact metric spaces with $N$-connection
Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015), 258–264
-
Almost contact metric structures defined by a symplectic structure over a distribution
Izv. Saratov Univ. Math. Mech. Inform., 15:2 (2015), 136–141
-
Almost contact Kählerian manifolds of constant holomorphic sectional curvature
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8, 42–52
-
Connections over a distribution and geodesic sprays
Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 4, 10–18
-
Almost contact metric structures defined by connection over distribution with admissible Finslerian metric
Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012), 17–22
-
The intrinsic geometry of almost contact metric manifolds
Izv. Saratov Univ. Math. Mech. Inform., 12:1 (2012), 16–22
-
Finsler structures from the point of view of the geometry of tangent bundles
Tr. Geom. Semin., 19 (1989), 52–57
-
In memory of Losik Mark Vol'fovich
Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013), 118–122
© , 2024