RUS  ENG
Full version
PEOPLE

Galaev Sergei Vasil'evich

Publications in Math-Net.Ru

  1. Geometry of sub–Riemannian manifolds equipped with a semimetric quarter–symmetric connection

    Ufimsk. Mat. Zh., 16:2 (2024),  27–36
  2. Geometry of almost $3$-quasi-Sasakian manifolds of the second kind

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 222 (2023),  3–9
  3. Sub-riemannian quasi-statistical structures on non-holonomic kenmotsu manifolds

    Applied Mathematics & Physics, 54:4 (2022),  205–212
  4. $\nabla^{N}$-Einstein almost contact metric manifolds

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 70,  5–15
  5. Geodesic transformations of distributions of sub-Riemannian manifolds

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020),  14–18
  6. Golden ration in geometry of $\eta$-einstein sub-riemannian manifolds with $N-$connection

    Applied Mathematics & Physics, 51:4 (2019),  465–474
  7. Classification of prolonged bi-metric structures on distributions of non-zero curvature of sub-Riemannian manifolds

    Izv. Saratov Univ. Math. Mech. Inform., 18:3 (2018),  263–273
  8. Extended structures on codistributions of contact metric manifolds

    Izv. Saratov Univ. Math. Mech. Inform., 17:2 (2017),  138–147
  9. $N$-extended symplectic connections in almost contact metric spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 3,  15–23
  10. On distributions with special quasi-sasakian structure

    Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2017, no. 2(39),  6–17
  11. Generalized Wagner's curvature tensor of almost contact metric spaces

    Chebyshevskii Sb., 17:3 (2016),  53–63
  12. Admissible hypercomplex structures on distributions of Sasakian manifolds

    Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016),  263–272
  13. Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure

    Sibirsk. Mat. Zh., 57:3 (2016),  632–640
  14. Almost contact metric spaces with $N$-connection

    Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015),  258–264
  15. Almost contact metric structures defined by a symplectic structure over a distribution

    Izv. Saratov Univ. Math. Mech. Inform., 15:2 (2015),  136–141
  16. Almost contact Kählerian manifolds of constant holomorphic sectional curvature

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8,  42–52
  17. Connections over a distribution and geodesic sprays

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 4,  10–18
  18. Almost contact metric structures defined by connection over distribution with admissible Finslerian metric

    Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012),  17–22
  19. The intrinsic geometry of almost contact metric manifolds

    Izv. Saratov Univ. Math. Mech. Inform., 12:1 (2012),  16–22
  20. Finsler structures from the point of view of the geometry of tangent bundles

    Tr. Geom. Semin., 19 (1989),  52–57

  21. In memory of Losik Mark Vol'fovich

    Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013),  118–122


© Steklov Math. Inst. of RAS, 2024