RUS  ENG
Full version
PEOPLE

Faizrahmanov Marat Khaidarovich

Publications in Math-Net.Ru

  1. On $e$-principal and $e$-complete numberings

    Mat. Zametki, 116:3 (2024),  461–476
  2. A family with a single minimal but not least numbering

    Sibirsk. Mat. Zh., 65:2 (2024),  395–407
  3. Effectively infinite classes of numberings of computable families of reals

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 5,  96–100
  4. Negative numberings in admissible sets. II

    Mat. Tr., 26:2 (2023),  86–128
  5. Positive reducibilities, extreme numberings, and completeness

    Mat. Tr., 26:1 (2023),  176–191
  6. Negative numberings in admissible sets. I

    Mat. Tr., 26:1 (2023),  47–92
  7. On the Embedding of the First Nonconstructive Ordinal in the Rogers Semilattices

    Mat. Zametki, 113:5 (2023),  764–774
  8. Effectively infinite classes of numberings and fixed point theorems

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  1519–1536
  9. Embedding of the first nonconstructive ordinal into the Rogers semilattices of families of arithmetic sets

    Sibirsk. Mat. Zh., 64:4 (2023),  830–840
  10. Enumeration reducibility and positive reducibility of the numberings of families of arithmetic sets

    Sibirsk. Mat. Zh., 64:1 (2023),  204–212
  11. Two theorems on minimal generally-computable numberings

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 3,  28–35
  12. Families of permutations and ideals of Turing degrees

    Algebra Logika, 61:6 (2022),  706–719
  13. On numberings for classes of families of total functions

    Mat. Tr., 25:1 (2022),  177–197
  14. Splitting of c.e. degrees and superlowness

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  578–585
  15. On $p$-universal and $p$-minimal numberings

    Sibirsk. Mat. Zh., 63:2 (2022),  427–436
  16. Some properties of the upper semilattice of computable families of computably enumerable sets

    Algebra Logika, 60:2 (2021),  195–209
  17. Weak reducibility of computable and generalized computable numberings

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  112–120
  18. Semidecidable numberings in admissible sets

    Algebra Logika, 59:3 (2020),  395–402
  19. Computable positive and Friedberg numberings in hyperarithmetic

    Algebra Logika, 59:1 (2020),  66–83
  20. Positive numberings in admissible sets

    Sibirsk. Mat. Zh., 61:3 (2020),  607–621
  21. Khutoretskii's theorem for generalized computable families

    Algebra Logika, 58:4 (2019),  528–541
  22. Lattice properties of Rogers semilattices of compuatble and generalized computable familie

    Sib. Èlektron. Mat. Izv., 16 (2019),  1927–1936
  23. Partial decidable presentations in hyperarithmetic

    Sibirsk. Mat. Zh., 60:3 (2019),  599–609
  24. Positive presentations of families in relation to reducibility with respect to enumerability

    Algebra Logika, 57:4 (2018),  492–498
  25. Jump inversions of algebraic structures and the $\Sigma$-definability

    Algebra Logika, 57:2 (2018),  243–249
  26. Degrees of enumerations of countable Wehner-like families

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018),  59–69
  27. Positive presentations of families relative to $e$-oracles

    Sibirsk. Mat. Zh., 59:4 (2018),  823–833
  28. Universal generalized computable numberings and hyperimmunity

    Algebra Logika, 56:4 (2017),  506–521
  29. The Rogers semilattices of generalized computable enumerations

    Sibirsk. Mat. Zh., 58:6 (2017),  1418–1427
  30. Minimal generalized computable enumerations and high degrees

    Sibirsk. Mat. Zh., 58:3 (2017),  710–716
  31. Universal computable enumerations of finite classes of families of total functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 12,  96–100
  32. A hierarchy of classes of families and $n$-low degrees

    Algebra Logika, 54:4 (2015),  536–541
  33. Arithmetical level of a class of superhigh sets

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5,  53–58
  34. Complements for enumeration $\Pi^0_1$-degrees

    Sibirsk. Mat. Zh., 54:6 (2013),  1388–1395
  35. Limitwise monotonic spectra of $\Sigma^0_2$-sets

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  107–116
  36. Turing jumps in the Ershov hierarchy

    Algebra Logika, 50:3 (2011),  399–414
  37. A semilattice generated by superlow computably enumerable degrees

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 1,  85–90
  38. Decomposability of low 2-computably enumerable degrees and Turing jumps in the Ershov hierarchy

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 12,  58–66
  39. Computable numberings of families of low sets and Turing jumps in the Ershov hierarchy

    Sibirsk. Mat. Zh., 51:6 (2010),  1435–1439

  40. Marat Mirzaevich Arslanov (on his eightieth birthday)

    Uspekhi Mat. Nauk, 79:2(476) (2024),  189–193


© Steklov Math. Inst. of RAS, 2024