| 
	
        
	
                        
	 | 
	
	
	
	
 
	
  
	
	
        
	  
			Publications in Math-Net.Ru
			
				- 
				On infinite direct sums of minimal numberings of functional families
Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 4,  38–52	 
					- 
				Continuity theorems for a class of computable operators
Mat. Zametki, 117:4 (2025),  591–599	 
					- 
				An approach to the classification of minimal numberings of families of arithmetical sets
Sibirsk. Mat. Zh., 66:2 (2025),  330–338	 
					- 
				On complete and almost complete constructive metric spaces
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 3,  31–38	 
					- 
				Groups of permutations and ideals of Turing degrees
Algebra Logika, 63:2 (2024),  209–224	 
					- 
				On $e$-principal and $e$-complete numberings
Mat. Zametki, 116:3 (2024),  461–476	 
					- 
				A family with a single minimal but not least numbering
Sibirsk. Mat. Zh., 65:2 (2024),  395–407	 
					- 
				Effectively infinite classes of numberings of computable families of reals
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 5,  96–100	 
					- 
				Negative numberings in admissible sets. II
Mat. Tr., 26:2 (2023),  86–128	 
					- 
				Positive reducibilities, extreme numberings, and completeness
Mat. Tr., 26:1 (2023),  176–191	 
					- 
				Negative numberings in admissible sets. I
Mat. Tr., 26:1 (2023),  47–92	 
					- 
				On the Embedding of the First Nonconstructive Ordinal
in the Rogers Semilattices
Mat. Zametki, 113:5 (2023),  764–774	 
					- 
				Effectively infinite classes of numberings and fixed point theorems
Sib. Èlektron. Mat. Izv., 20:2 (2023),  1519–1536	 
					- 
				Embedding of the first nonconstructive ordinal into the Rogers semilattices of families of arithmetic sets
Sibirsk. Mat. Zh., 64:4 (2023),  830–840	 
					- 
				Enumeration reducibility and positive reducibility of the numberings of families of arithmetic sets
Sibirsk. Mat. Zh., 64:1 (2023),  204–212	 
					- 
				Two theorems on minimal generally-computable numberings
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 3,  28–35	 
					- 
				Families of permutations and ideals of Turing degrees
Algebra Logika, 61:6 (2022),  706–719	 
					- 
				On numberings for classes of families of total functions
Mat. Tr., 25:1 (2022),  177–197	 
					- 
				Splitting of c.e. degrees and superlowness
Sib. Èlektron. Mat. Izv., 19:2 (2022),  578–585	 
					- 
				On $p$-universal and $p$-minimal numberings
Sibirsk. Mat. Zh., 63:2 (2022),  427–436	 
					- 
				Some properties of the upper semilattice of computable families of computably enumerable sets
Algebra Logika, 60:2 (2021),  195–209	 
					- 
				Weak reducibility of computable and generalized computable numberings
Sib. Èlektron. Mat. Izv., 18:1 (2021),  112–120	 
					- 
				Semidecidable numberings in admissible sets
Algebra Logika, 59:3 (2020),  395–402	 
					- 
				Computable positive and Friedberg numberings in hyperarithmetic
Algebra Logika, 59:1 (2020),  66–83	 
					- 
				Positive numberings in admissible sets
Sibirsk. Mat. Zh., 61:3 (2020),  607–621	 
					- 
				Khutoretskii's theorem for generalized computable families
Algebra Logika, 58:4 (2019),  528–541	 
					- 
				Lattice properties of Rogers semilattices of compuatble and generalized computable familie
Sib. Èlektron. Mat. Izv., 16 (2019),  1927–1936	 
					- 
				Partial decidable presentations in hyperarithmetic
Sibirsk. Mat. Zh., 60:3 (2019),  599–609	 
					- 
				Positive presentations of families in relation to reducibility with respect to enumerability
Algebra Logika, 57:4 (2018),  492–498	 
					- 
				Jump inversions of algebraic structures and the $\Sigma$-definability
Algebra Logika, 57:2 (2018),  243–249	 
					- 
				Degrees of enumerations of countable Wehner-like families
Itogi Nauki i Tekhniki.  Sovrem. Mat. Pril. Temat. Obz., 157 (2018),  59–69	 
					- 
				Positive presentations of families relative to $e$-oracles
Sibirsk. Mat. Zh., 59:4 (2018),  823–833	 
					- 
				Universal generalized computable numberings and hyperimmunity
Algebra Logika, 56:4 (2017),  506–521	 
					- 
				The Rogers semilattices of generalized computable enumerations
Sibirsk. Mat. Zh., 58:6 (2017),  1418–1427	 
					- 
				Minimal generalized computable enumerations and high degrees
Sibirsk. Mat. Zh., 58:3 (2017),  710–716	 
					- 
				Universal computable enumerations of finite classes of families of total functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 12,  96–100	 
					- 
				A hierarchy of classes of families and $n$-low degrees
Algebra Logika, 54:4 (2015),  536–541	 
					- 
				Arithmetical level of a class of superhigh sets
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5,  53–58	 
					- 
				Complements for enumeration $\Pi^0_1$-degrees
Sibirsk. Mat. Zh., 54:6 (2013),  1388–1395	 
					- 
				Limitwise monotonic spectra of $\Sigma^0_2$-sets
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  107–116	 
					- 
				Turing jumps in the Ershov hierarchy
Algebra Logika, 50:3 (2011),  399–414	 
					- 
				A semilattice generated by superlow computably enumerable degrees
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 1,  85–90	 
					- 
				Decomposability of low 2-computably enumerable degrees and Turing jumps in the Ershov hierarchy
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 12,  58–66	 
					- 
				Computable numberings of families of low sets and Turing jumps in the Ershov hierarchy
Sibirsk. Mat. Zh., 51:6 (2010),  1435–1439	 
					
						- 
				Marat Mirzaevich Arslanov (on his eightieth birthday)
Uspekhi Mat. Nauk, 79:2(476) (2024),  189–193	 
					
			 
				
	
	
	
	© , 2025