RUS  ENG
Full version
PEOPLE

Faizrahmanov Marat Khaidarovich

Publications in Math-Net.Ru

  1. On infinite direct sums of minimal numberings of functional families

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 4,  38–52
  2. Continuity theorems for a class of computable operators

    Mat. Zametki, 117:4 (2025),  591–599
  3. An approach to the classification of minimal numberings of families of arithmetical sets

    Sibirsk. Mat. Zh., 66:2 (2025),  330–338
  4. Complete and almost complete constructive metric spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 3,  31–38
  5. Groups of permutations and ideals of Turing degrees

    Algebra Logika, 63:2 (2024),  209–224
  6. On $e$-principal and $e$-complete numberings

    Mat. Zametki, 116:3 (2024),  461–476
  7. A family with a single minimal but not least numbering

    Sibirsk. Mat. Zh., 65:2 (2024),  395–407
  8. Effectively infinite classes of numberings of computable families of reals

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 5,  96–100
  9. Negative numberings in admissible sets. II

    Mat. Tr., 26:2 (2023),  86–128
  10. Positive reducibilities, extreme numberings, and completeness

    Mat. Tr., 26:1 (2023),  176–191
  11. Negative numberings in admissible sets. I

    Mat. Tr., 26:1 (2023),  47–92
  12. On the Embedding of the First Nonconstructive Ordinal in the Rogers Semilattices

    Mat. Zametki, 113:5 (2023),  764–774
  13. Effectively infinite classes of numberings and fixed point theorems

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  1519–1536
  14. Embedding of the first nonconstructive ordinal into the Rogers semilattices of families of arithmetic sets

    Sibirsk. Mat. Zh., 64:4 (2023),  830–840
  15. Enumeration reducibility and positive reducibility of the numberings of families of arithmetic sets

    Sibirsk. Mat. Zh., 64:1 (2023),  204–212
  16. Two theorems on minimal generally-computable numberings

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 3,  28–35
  17. Families of permutations and ideals of Turing degrees

    Algebra Logika, 61:6 (2022),  706–719
  18. On numberings for classes of families of total functions

    Mat. Tr., 25:1 (2022),  177–197
  19. Splitting of c.e. degrees and superlowness

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  578–585
  20. On $p$-universal and $p$-minimal numberings

    Sibirsk. Mat. Zh., 63:2 (2022),  427–436
  21. Some properties of the upper semilattice of computable families of computably enumerable sets

    Algebra Logika, 60:2 (2021),  195–209
  22. Weak reducibility of computable and generalized computable numberings

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  112–120
  23. Semidecidable numberings in admissible sets

    Algebra Logika, 59:3 (2020),  395–402
  24. Computable positive and Friedberg numberings in hyperarithmetic

    Algebra Logika, 59:1 (2020),  66–83
  25. Positive numberings in admissible sets

    Sibirsk. Mat. Zh., 61:3 (2020),  607–621
  26. Khutoretskii's theorem for generalized computable families

    Algebra Logika, 58:4 (2019),  528–541
  27. Lattice properties of Rogers semilattices of compuatble and generalized computable familie

    Sib. Èlektron. Mat. Izv., 16 (2019),  1927–1936
  28. Partial decidable presentations in hyperarithmetic

    Sibirsk. Mat. Zh., 60:3 (2019),  599–609
  29. Positive presentations of families in relation to reducibility with respect to enumerability

    Algebra Logika, 57:4 (2018),  492–498
  30. Jump inversions of algebraic structures and the $\Sigma$-definability

    Algebra Logika, 57:2 (2018),  243–249
  31. Degrees of enumerations of countable Wehner-like families

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018),  59–69
  32. Positive presentations of families relative to $e$-oracles

    Sibirsk. Mat. Zh., 59:4 (2018),  823–833
  33. Universal generalized computable numberings and hyperimmunity

    Algebra Logika, 56:4 (2017),  506–521
  34. The Rogers semilattices of generalized computable enumerations

    Sibirsk. Mat. Zh., 58:6 (2017),  1418–1427
  35. Minimal generalized computable enumerations and high degrees

    Sibirsk. Mat. Zh., 58:3 (2017),  710–716
  36. Universal computable enumerations of finite classes of families of total functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 12,  96–100
  37. A hierarchy of classes of families and $n$-low degrees

    Algebra Logika, 54:4 (2015),  536–541
  38. Arithmetical level of a class of superhigh sets

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5,  53–58
  39. Complements for enumeration $\Pi^0_1$-degrees

    Sibirsk. Mat. Zh., 54:6 (2013),  1388–1395
  40. Limitwise monotonic spectra of $\Sigma^0_2$-sets

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  107–116
  41. Turing jumps in the Ershov hierarchy

    Algebra Logika, 50:3 (2011),  399–414
  42. A semilattice generated by superlow computably enumerable degrees

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 1,  85–90
  43. Decomposability of low 2-computably enumerable degrees and Turing jumps in the Ershov hierarchy

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 12,  58–66
  44. Computable numberings of families of low sets and Turing jumps in the Ershov hierarchy

    Sibirsk. Mat. Zh., 51:6 (2010),  1435–1439

  45. Marat Mirzaevich Arslanov (on his eightieth birthday)

    Uspekhi Mat. Nauk, 79:2(476) (2024),  189–193


© Steklov Math. Inst. of RAS, 2025