|
|
Publications in Math-Net.Ru
-
On $e$-principal and $e$-complete numberings
Mat. Zametki, 116:3 (2024), 461–476
-
A family with a single minimal but not least numbering
Sibirsk. Mat. Zh., 65:2 (2024), 395–407
-
Effectively infinite classes of numberings of computable families of reals
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 5, 96–100
-
Negative numberings in admissible sets. II
Mat. Tr., 26:2 (2023), 86–128
-
Positive reducibilities, extreme numberings, and completeness
Mat. Tr., 26:1 (2023), 176–191
-
Negative numberings in admissible sets. I
Mat. Tr., 26:1 (2023), 47–92
-
On the Embedding of the First Nonconstructive Ordinal
in the Rogers Semilattices
Mat. Zametki, 113:5 (2023), 764–774
-
Effectively infinite classes of numberings and fixed point theorems
Sib. Èlektron. Mat. Izv., 20:2 (2023), 1519–1536
-
Embedding of the first nonconstructive ordinal into the Rogers semilattices of families of arithmetic sets
Sibirsk. Mat. Zh., 64:4 (2023), 830–840
-
Enumeration reducibility and positive reducibility of the numberings of families of arithmetic sets
Sibirsk. Mat. Zh., 64:1 (2023), 204–212
-
Two theorems on minimal generally-computable numberings
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 3, 28–35
-
Families of permutations and ideals of Turing degrees
Algebra Logika, 61:6 (2022), 706–719
-
On numberings for classes of families of total functions
Mat. Tr., 25:1 (2022), 177–197
-
Splitting of c.e. degrees and superlowness
Sib. Èlektron. Mat. Izv., 19:2 (2022), 578–585
-
On $p$-universal and $p$-minimal numberings
Sibirsk. Mat. Zh., 63:2 (2022), 427–436
-
Some properties of the upper semilattice of computable families of computably enumerable sets
Algebra Logika, 60:2 (2021), 195–209
-
Weak reducibility of computable and generalized computable numberings
Sib. Èlektron. Mat. Izv., 18:1 (2021), 112–120
-
Semidecidable numberings in admissible sets
Algebra Logika, 59:3 (2020), 395–402
-
Computable positive and Friedberg numberings in hyperarithmetic
Algebra Logika, 59:1 (2020), 66–83
-
Positive numberings in admissible sets
Sibirsk. Mat. Zh., 61:3 (2020), 607–621
-
Khutoretskii's theorem for generalized computable families
Algebra Logika, 58:4 (2019), 528–541
-
Lattice properties of Rogers semilattices of compuatble and generalized computable familie
Sib. Èlektron. Mat. Izv., 16 (2019), 1927–1936
-
Partial decidable presentations in hyperarithmetic
Sibirsk. Mat. Zh., 60:3 (2019), 599–609
-
Positive presentations of families in relation to reducibility with respect to enumerability
Algebra Logika, 57:4 (2018), 492–498
-
Jump inversions of algebraic structures and the $\Sigma$-definability
Algebra Logika, 57:2 (2018), 243–249
-
Degrees of enumerations of countable Wehner-like families
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018), 59–69
-
Positive presentations of families relative to $e$-oracles
Sibirsk. Mat. Zh., 59:4 (2018), 823–833
-
Universal generalized computable numberings and hyperimmunity
Algebra Logika, 56:4 (2017), 506–521
-
The Rogers semilattices of generalized computable enumerations
Sibirsk. Mat. Zh., 58:6 (2017), 1418–1427
-
Minimal generalized computable enumerations and high degrees
Sibirsk. Mat. Zh., 58:3 (2017), 710–716
-
Universal computable enumerations of finite classes of families of total functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 12, 96–100
-
A hierarchy of classes of families and $n$-low degrees
Algebra Logika, 54:4 (2015), 536–541
-
Arithmetical level of a class of superhigh sets
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5, 53–58
-
Complements for enumeration $\Pi^0_1$-degrees
Sibirsk. Mat. Zh., 54:6 (2013), 1388–1395
-
Limitwise monotonic spectra of $\Sigma^0_2$-sets
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012), 107–116
-
Turing jumps in the Ershov hierarchy
Algebra Logika, 50:3 (2011), 399–414
-
A semilattice generated by superlow computably enumerable degrees
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 1, 85–90
-
Decomposability of low 2-computably enumerable degrees and Turing jumps in the Ershov hierarchy
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 12, 58–66
-
Computable numberings of families of low sets and Turing jumps in the Ershov hierarchy
Sibirsk. Mat. Zh., 51:6 (2010), 1435–1439
-
Marat Mirzaevich Arslanov (on his eightieth birthday)
Uspekhi Mat. Nauk, 79:2(476) (2024), 189–193
© , 2024