RUS  ENG
Full version
PEOPLE

Dik Ivan Genrikhovich

Publications in Math-Net.Ru

  1. Investigation of water injection influence on hydrocyclone separation performance

    Computer Research and Modeling, 4:4 (2012),  803–810
  2. CFD-modeling of a flow in a hydrocyclone with an additional water injector

    Computer Research and Modeling, 3:1 (2011),  63–76
  3. Influence of the particle size distribution function in a polydisperse suspension on the separation process in a classification apparatus

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2007, no. 1,  63–71
  4. Ignition of a porous layer with a flow of heat carrier

    Fizika Goreniya i Vzryva, 30:2 (1994),  3–7
  5. Stationary regimes of nonisothermal chemical reactions in a porous layer

    Fizika Goreniya i Vzryva, 29:6 (1993),  63–66
  6. Two-temperature model for the ignition of porous systems

    Fizika Goreniya i Vzryva, 29:6 (1993),  3–8
  7. Effect of spark discharge parameters on the ignition of gas mixtures

    Fizika Goreniya i Vzryva, 29:5 (1993),  3–7
  8. Boundaries of thermal explosion degeneration in a flow system in the presence of a supplementary heat source

    Fizika Goreniya i Vzryva, 29:4 (1993),  91–97
  9. Calculation of ignition parameters and the transition to combustion in a heterogeneous system

    Fizika Goreniya i Vzryva, 29:3 (1993),  124–129
  10. Transition of the combustion front through a nonideal contact of two gasified solid fuels

    Fizika Goreniya i Vzryva, 29:2 (1993),  28–31
  11. Effect of the parameters of a dispersed material on the minimum energy for spark ignition

    Fizika Goreniya i Vzryva, 29:2 (1993),  9–12
  12. Ignition of a nonstoichiometric composition gas mixture by means of a spark discharge with a spatially-temporal energy release

    Fizika Goreniya i Vzryva, 28:2 (1992),  3–8
  13. Ignition of a thin film by a beam of radiant energy

    Fizika Goreniya i Vzryva, 27:6 (1991),  3–10
  14. Role of the gas phase in the transition of condensed material to combustion on ignition by a radiation flux

    Fizika Goreniya i Vzryva, 27:4 (1991),  7–12
  15. Calculation of combustion regimes for a twisted gas flow in a tubular ideal displacement reactor

    Fizika Goreniya i Vzryva, 27:2 (1991),  89–94
  16. Model of ignition and transit to combustion of condensed gasification substance

    Matem. Mod., 3:4 (1991),  3–11
  17. Ignition of a gas suspension in a cavity with heated radiating walls

    Fizika Goreniya i Vzryva, 26:5 (1990),  20–24
  18. Ignition of a thin film by radiant energy as optical properties vary during the reaction

    Fizika Goreniya i Vzryva, 26:3 (1990),  3–7
  19. Ignition of a condensed material with a disintegrated near-surface layer

    Fizika Goreniya i Vzryva, 26:2 (1990),  18–23
  20. Ignition of a hot sheet of condensed material through an inert shield

    Fizika Goreniya i Vzryva, 26:2 (1990),  8–18
  21. Spark ignition of atomized liquid fuel

    Fizika Goreniya i Vzryva, 26:1 (1990),  11–15
  22. Ignition of condensed material by a heat flux pulse across an opaque shield having a high thermal conductivity

    Fizika Goreniya i Vzryva, 25:6 (1989),  3–9
  23. Analysis of nonstationary ignition of a condensed material by a heated surface

    Fizika Goreniya i Vzryva, 25:4 (1989),  9–11
  24. Ignition of a condensed substance shielded by a translucent heat-conducting plate

    Fizika Goreniya i Vzryva, 25:3 (1989),  9–16
  25. Inhibition of gas flames by powder compositions

    Fizika Goreniya i Vzryva, 25:2 (1989),  57–62
  26. Contribution to the problem of stability criteria for the ignition of a condensed medium

    Fizika Goreniya i Vzryva, 25:1 (1989),  12–16
  27. Heat transfer between an eddying flow and a three-dimensional heat source

    Prikl. Mekh. Tekh. Fiz., 30:5 (1989),  113–116
  28. Parallel reactions in a condensed substance and decomposition-kinetics parameter determination by ignition

    Fizika Goreniya i Vzryva, 24:5 (1988),  100–103
  29. Spark ignition by successive discharges

    Fizika Goreniya i Vzryva, 24:5 (1988),  12–15
  30. Ignition of heterogeneous systems by radiant energy

    Fizika Goreniya i Vzryva, 24:4 (1988),  3–10
  31. Flame propagation in a dusty gas

    Fizika Goreniya i Vzryva, 23:6 (1987),  25–30
  32. Transition to the combustion of a condensed substance with the action of a light pulse

    Fizika Goreniya i Vzryva, 22:6 (1986),  88–93
  33. Solution by the thermal impedance method to the problem of critical conditions for self-ignition

    Fizika Goreniya i Vzryva, 22:5 (1986),  3–9
  34. Ignition of a dust cloud by a spark

    Fizika Goreniya i Vzryva, 22:2 (1986),  10–17
  35. Combustion zone propagation in a turbulent medium

    Fizika Goreniya i Vzryva, 21:4 (1985),  32–38
  36. Ignition regimes of a gas suspension in a vessel with heated walls

    Fizika Goreniya i Vzryva, 20:5 (1984),  58–61
  37. Variation of the velocity of propagation of a thermal-diffusion flame over a wide range of Lewis numbers

    Fizika Goreniya i Vzryva, 20:5 (1984),  35–42
  38. Application of the method of integral relations in problems of igition theory

    Fizika Goreniya i Vzryva, 18:4 (1982),  16–22
  39. Thermal-explosion degeneration limits in a system with an additional heat source

    Fizika Goreniya i Vzryva, 16:1 (1980),  133–136
  40. Stability of the ignition of condensed substances with the action of a heat-flux pulse

    Fizika Goreniya i Vzryva, 15:3 (1979),  77–82
  41. Thermal explosion in a viscous-liquid flow in a channel of finite length

    Fizika Goreniya i Vzryva, 14:3 (1978),  121–124
  42. Critical conditions for thermal explosion in the presence of a supplementary heat source

    Fizika Goreniya i Vzryva, 14:2 (1978),  49–52
  43. Influence of turbulence on heat transfer, structure, and chemical reaction in a flame

    Fizika Goreniya i Vzryva, 13:3 (1977),  359–366
  44. Critical conditions for thermal explosion of a viscous fluid flowing in a channel of finite length

    Fizika Goreniya i Vzryva, 12:1 (1976),  81–89
  45. Statistical-phenomenological approach to the description of turbulent flames

    Prikl. Mekh. Tekh. Fiz., 17:5 (1976),  61–68
  46. On frontal combustion in a slightly intense large scale turbulent stream

    Fizika Goreniya i Vzryva, 11:2 (1975),  223–229
  47. Stationary modes of combustion in a fine-scale turbulent stream

    Prikl. Mekh. Tekh. Fiz., 14:5 (1973),  118–124


© Steklov Math. Inst. of RAS, 2024