RUS  ENG
Full version
PEOPLE

Rafal'son Semyon Z

Publications in Math-Net.Ru

  1. Generalized shift, generalized convolution and some extremal relations of the theory of approximation of function

    Zap. Nauchn. Sem. LOMI, 149 (1986),  150–157
  2. Some inequalities between norms of a function and its derivatives in integral metrics

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 12,  3–6
  3. Lebesgue $p$-functions of Fourier–Jacobi sums

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 5,  75–78
  4. Norms of operators that are Fourier–Legendre partial sums

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 8,  54–59
  5. An inequality between the norms of a function and its derivatives in integral metrics

    Mat. Zametki, 33:1 (1983),  77–82
  6. The analogue of a theorem of A. Zygmund for Legendre polynomials

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 8,  54–59
  7. On partial sums of Fourier series in orthogonal polynomials

    Dokl. Akad. Nauk SSSR, 237:6 (1977),  1297–1300
  8. The approximation of functions of the classes $\mathrm{Lip}\alpha$ by Fejér–Legendre sums

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 5,  109–112
  9. The approximation of continuous functions by algebraic polynomials

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 11,  75–87
  10. The approximation of functions by algebraic polynomials in the $L_p$ metric

    Dokl. Akad. Nauk SSSR, 208:3 (1973),  545–547
  11. Fourier–Laguerre coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 11,  93–98
  12. The approximation of functions in the mean by Fourier–Hermite sums

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 7,  78–84
  13. The approximation of functions by Fourier–Jacobi sums

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 4,  54–62
  14. Mean approximation of functions by Fourier-Gegenbauer sums

    Mat. Zametki, 3:5 (1968),  587–596
  15. A generalization of an inequality of Fejér

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 2,  57–63
  16. An asymptotic formula of the theory of orthogonal polynomials

    Dokl. Akad. Nauk SSSR, 171:4 (1966),  802–805
  17. On polynomials which are orthogonal with respect to a weight

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 3,  146–154
  18. On the convergence of series of orthogonal polynomials at points of discontinuity of the integral weight function

    Sibirsk. Mat. Zh., 6:1 (1965),  241–243


© Steklov Math. Inst. of RAS, 2024