RUS  ENG
Full version
PEOPLE

Khubiev Kazbek Uzeirovich

Publications in Math-Net.Ru

  1. Analogue of Bitsadze–Samarskii problem for loaded hyperbolic-parabolic equation with degeneration of order in the hyperbolicity domain

    Adyghe Int. Sci. J., 24:4 (2024),  72–79
  2. Analogue of Tricomi problem for one characteristically loaded hyperbolic-parabolic equation

    Adyghe Int. Sci. J., 23:4 (2023),  54–61
  3. The Bitsadze–Samarskii problem for a loaded hyperbolic-parabolic equation with degeneracy of order in the hyperbolicity domain

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198 (2021),  123–132
  4. Boundary-value problems for a characteristically loaded hyperbolic-parabolic equation

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195 (2021),  127–138
  5. On an analogue of the tricomi problem for a «pointwise» loaded hyperbolic-parabolic equation

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 36:3 (2021),  29–39
  6. Cauchy problem fore one loaded wave equation

    Reports of AIAS, 20:4 (2020),  9–14
  7. Boundary-value problem for a loaded hyperbolic-parabolic equation with degeneration of order

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167 (2019),  112–116
  8. A problem of the Bitsadze–Samarskii type for a loaded hyperbolic-parabolic equation

    Mathematical notes of NEFU, 26:2 (2019),  31–40
  9. The Bitsadze–Samarskii problem for some characteristically loaded hyperbolic-parabolic equation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:4 (2019),  789–796
  10. Boundary-Value Problem for a Loaded Equation of Hyperbolic-Parabolic Type with Degeneracy of Order in the Domain of Hyperbolicity

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149 (2018),  113–117
  11. Boundary value problem with shift for loaded hyperbolic-parabolic type equation involving fractional diffusion operator

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:1 (2018),  82–90
  12. On a non-local problem for mixed hyperbolic-parabolic equations

    Mathematical notes of NEFU, 24:3 (2017),  12–18
  13. Analogue of Tricomi problem for characteristically loaded hyperbolic-parabolic equation with variable coefficients

    Ufimsk. Mat. Zh., 9:2 (2017),  94–103
  14. A problem with an integral condition in the hyperbolic part for a characteristically loaded hyperbolic-parabolic equation

    Mathematical notes of NEFU, 23:4 (2016),  91–98
  15. On mathematical models of the Aller equation

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 2016, no. 4-1(16),  56–65
  16. A maximum principle for a loaded hyperbolic-parabolic equation

    Vladikavkaz. Mat. Zh., 18:4 (2016),  80–85
  17. About model of loaded partial hyperbolic-parabolic differential equation of second order

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, no. 2(11),  27–38
  18. Задача Геллерстедта для нагруженного уравнения смешанного типа c данными на непараллельных характеристиках

    Matem. Mod. Kraev. Zadachi, 3 (2007),  187–188
  19. Tricomi problem analogue for loaded equation of hyperbolic-parabolic type with variable coefficients

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(15) (2007),  155–158
  20. Об одной краевой задаче для нагруженного уравнения гиперболо-параболического типа

    Matem. Mod. Kraev. Zadachi, 3 (2004),  231–232


© Steklov Math. Inst. of RAS, 2025