RUS  ENG
Full version
PEOPLE

Panasenko Elena Aleksandrovna

Publications in Math-Net.Ru

  1. The method of comparison with a model equation in the study of inclusions in vector metric spaces

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  68–85
  2. On Operator Inclusions in Spaces with Vector-Valued Metrics

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:3 (2023),  106–127
  3. On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022),  361–382
  4. Darboux transformations for the strict KP hierarchy

    TMF, 206:3 (2021),  339–360
  5. Reductions of the strict KP hierarchy

    TMF, 205:2 (2020),  190–207
  6. Scaling invariance of the strict KP hierarchy

    Russian Universities Reports. Mathematics, 25:131 (2020),  331–340
  7. Properties of the algebra psd related to integrable hierarchies

    Russian Universities Reports. Mathematics, 25:130 (2020),  183–195
  8. Expressions in Fredholm determinants for solutions of the strict KP hierarchy

    TMF, 199:2 (2019),  193–209
  9. Geometric solutions of the strict KP hierarchy

    TMF, 198:1 (2019),  54–78
  10. On the Metric Space of Closed Subsets of a Metric Space and Set-Valued Maps with Closed Images

    Mat. Zametki, 104:1 (2018),  99–117
  11. On fixed points of multivalued mappings in spaces with a vector-valued metric

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:1 (2018),  93–105
  12. About existence and estimation of solution to one integral inclusion

    Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017),  1247–1254
  13. On convergence in the space of closed subsets of a metric space

    Tambov University Reports. Series: Natural and Technical Sciences, 22:3 (2017),  565–570
  14. Bilinear equations for the strict KP hierarchy

    TMF, 185:3 (2015),  512–526
  15. Definition of the metric on the space $\mathrm{clos}_{\varnothing}(X)$ of closed subsets of a metric space $X$ and properties of mappings with values in $\mathrm{clos}_{\varnothing}(\mathbb{R}}^n)$

    Mat. Sb., 205:9 (2014),  65–96
  16. Integrable deformations in the algebra of pseudodifferential operators from a Lie algebraic perspective

    TMF, 174:1 (2013),  154–176
  17. On fixed points of multi-valued maps in metric spaces and differential inclusions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 2,  12–26
  18. Perturbation of Volterra inclusions by impulse operator

    Izv. IMI UdGU, 2012, no. 1(39),  17–20
  19. Dynamical system of translations in the space of multi-valued functions with closed images

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 2,  28–33
  20. On one metric in the space of nonempty closed subsets of $\mathbb R^n$

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 1,  15–25
  21. The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  162–177
  22. Asymptotically stable statistically weakly invariant sets for controlled systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  135–142
  23. On existence of recurrent and almost periodic solutions to differential inclusion

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 3,  42–57
  24. Extension of E. A. Barbashin's and N. N. Krasovskii's stability theorems to controlled dynamical systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:3 (2009),  185–201
  25. Invariant and Stably Invariant Sets for Differential Inclusions

    Trudy Mat. Inst. Steklova, 262 (2008),  202–221
  26. Numerical Solution of Some Inverse Problems with Various Types of Sources of Atmospheric Pollution

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2008, no. 2(3),  47–55
  27. Absorption, nonwandering, and reccurence of the attainable set of a controllable system

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  97–104
  28. Stably invariant sets of differential inclusions

    Izv. IMI UdGU, 2006, no. 3(37),  121–122
  29. Quasilinear boundary value problems for the functional-differential inclusions

    Izv. IMI UdGU, 2006, no. 2(36),  13–16
  30. Density principle and stability of sets of periodic solutions for differential inclusion

    Vestn. Udmurtsk. Univ. Mat., 2005, no. 1,  139–154
  31. Ordinary Differential Inclusions with Internal and External Perturbations

    Differ. Uravn., 36:12 (2000),  1587–1598

  32. In memory of professor Alexander Ivanovich Bulgakov

    Russian Universities Reports. Mathematics, 25:129 (2020),  100–102


© Steklov Math. Inst. of RAS, 2024