|
|
Publications in Math-Net.Ru
-
Calculation of discrete semi-bounded operators’ eigenvalues with large numbers
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:1 (2019), 10–15
-
Inverse spectral problems and mathematical models of continuum mechanics
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019), 5–24
-
Spectral problem for a mathematical model of hydrodynamics
J. Comp. Eng. Math., 5:1 (2018), 51–56
-
A direct spectral problem for $L$-spectrum of the perturbed operator with a multiple spectrum
J. Comp. Eng. Math., 4:3 (2017), 19–26
-
Spectral problems for one mathematical model of hydrodynamics
J. Comp. Eng. Math., 4:1 (2017), 48–56
-
Calculation of eigenvalues of discrete semibounded differential operators
J. Comp. Eng. Math., 4:1 (2017), 38–47
-
Spectral problems on compact graphs
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:3 (2017), 156–162
-
The existence of solution of the inverse spectral problem for discrete self-adjoint semi-bounded from below operator
J. Comp. Eng. Math., 2:4 (2015), 95–99
-
A numerical method for inverse spectral problems
Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:3 (2015), 116–126
-
Introducing a power of the operator in direct spectral problems
Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:3 (2014), 116–120
-
Potential's restore in the inverse spectral problem for Laplace operator with multiple spectrum
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 6, 25–28
-
The inverse spectral problem for a power of the Laplace operator in the case of the Neuman problem on a parallelepiped
Vestnik Chelyabinsk. Gos. Univ., 2008, no. 10, 63–67
-
An approximate solution of the inverse spectral problem for the Laplace operator
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008), 250–253
-
To the 65th anniversary of professor G. A. Sviridyuk
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017), 155–158
-
Sergei Ivanovich Kadchenko (to the 65th anniversary)
J. Comp. Eng. Math., 2:4 (2015), 100–102
© , 2025