|
|
Publications in Math-Net.Ru
-
Reconstruction of three-dimensional vector fields based on values of normal, longitudinal, and weighted Radon transforms
Sib. Zh. Ind. Mat., 26:4 (2023), 125–142
-
Decomposition of symmetric tensor fields in $\mathbb{R}^3$
Sib. Zh. Ind. Mat., 26:1 (2023), 161–178
-
Reconstruction of a function and its singular support in a cylinder by tomographic data
Eurasian Journal of Mathematical and Computer Applications, 8:2 (2020), 86–97
-
The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$
Sib. Èlektron. Mat. Izv., 17 (2020), 1073–1087
-
The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields
Sib. Zh. Ind. Mat., 22:1 (2019), 104–115
-
Determination of discontinuities of a function in a domain with refraction from its attenuated ray transform
Sib. Zh. Ind. Mat., 21:4 (2018), 51–74
-
Approximate inversion of operators of two-dimensional vector tomography
Sib. Èlektron. Mat. Izv., 13 (2016), 607–623
-
Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform
Sib. Èlektron. Mat. Izv., 13 (2016), 154–174
-
Mathematical models and algorithms for reconstruction of singular support of functions and vector fields by tomographic data
Eurasian Journal of Mathematical and Computer Applications, 3:4 (2015), 4–44
-
Tomography of tensor fields in the plane
Eurasian Journal of Mathematical and Computer Applications, 3:2 (2015), 25–69
-
Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition
Sib. Èlektron. Mat. Izv., 12 (2015), 480–499
-
Inversion formulas for recovering the harmonic 2D-vector field by known ray transforms
Sib. Èlektron. Mat. Izv., 12 (2015), 436–446
-
Numerical solution of reconstruction problem of a potential vector field in a ball from its normal Radon transform
Sib. Zh. Ind. Mat., 18:3 (2015), 63–75
-
A numerical inversion of the ray transform operator in refraction tomography
Sib. Èlektron. Mat. Izv., 11 (2014), 833–856
-
Approximate recovery of a function given in a domain with low refraction from the ray integrals of the function
Sib. Zh. Ind. Mat., 17:4 (2014), 48–59
-
Properties of the ray transforms of two-dimensional $2$-tensor fields given in the unit disk
Sib. Zh. Ind. Mat., 16:4 (2013), 121–130
-
Reconstruction of solenoidal part of a three-dimensional vector field by its ray transforms along straight lines, parallel to the coordinate planes
Sib. Zh. Vychisl. Mat., 15:3 (2012), 329–344
-
Reconstruction of solenoidal $2$-tensor fields, given in a unit disk, in their longitudinal ray transforms
Sib. Èlektron. Mat. Izv., 7 (2010), 139–149
-
Reconstruction of 2-tensor fields, given in a unit circle, by their ray transforms based on LSM with $B$-splines
Sib. Zh. Vychisl. Mat., 13:2 (2010), 183–199
-
Использование $B$-сплайнов в задаче эмиссионной $2D$-томографии в рефрагирующей среде
Sib. Zh. Ind. Mat., 11:3 (2008), 45–60
-
Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography
Sib. Èlektron. Mat. Izv., 10 (2013), 90–108
© , 2024