RUS  ENG
Full version
PEOPLE

Svetov Ivan Evgen'evich

Publications in Math-Net.Ru

  1. Reconstruction of three-dimensional vector fields based on values of normal, longitudinal, and weighted Radon transforms

    Sib. Zh. Ind. Mat., 26:4 (2023),  125–142
  2. Decomposition of symmetric tensor fields in $\mathbb{R}^3$

    Sib. Zh. Ind. Mat., 26:1 (2023),  161–178
  3. Reconstruction of a function and its singular support in a cylinder by tomographic data

    Eurasian Journal of Mathematical and Computer Applications, 8:2 (2020),  86–97
  4. The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$

    Sib. Èlektron. Mat. Izv., 17 (2020),  1073–1087
  5. The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields

    Sib. Zh. Ind. Mat., 22:1 (2019),  104–115
  6. Determination of discontinuities of a function in a domain with refraction from its attenuated ray transform

    Sib. Zh. Ind. Mat., 21:4 (2018),  51–74
  7. Approximate inversion of operators of two-dimensional vector tomography

    Sib. Èlektron. Mat. Izv., 13 (2016),  607–623
  8. Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform

    Sib. Èlektron. Mat. Izv., 13 (2016),  154–174
  9. Mathematical models and algorithms for reconstruction of singular support of functions and vector fields by tomographic data

    Eurasian Journal of Mathematical and Computer Applications, 3:4 (2015),  4–44
  10. Tomography of tensor fields in the plane

    Eurasian Journal of Mathematical and Computer Applications, 3:2 (2015),  25–69
  11. Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition

    Sib. Èlektron. Mat. Izv., 12 (2015),  480–499
  12. Inversion formulas for recovering the harmonic 2D-vector field by known ray transforms

    Sib. Èlektron. Mat. Izv., 12 (2015),  436–446
  13. Numerical solution of reconstruction problem of a potential vector field in a ball from its normal Radon transform

    Sib. Zh. Ind. Mat., 18:3 (2015),  63–75
  14. A numerical inversion of the ray transform operator in refraction tomography

    Sib. Èlektron. Mat. Izv., 11 (2014),  833–856
  15. Approximate recovery of a function given in a domain with low refraction from the ray integrals of the function

    Sib. Zh. Ind. Mat., 17:4 (2014),  48–59
  16. Properties of the ray transforms of two-dimensional $2$-tensor fields given in the unit disk

    Sib. Zh. Ind. Mat., 16:4 (2013),  121–130
  17. Reconstruction of solenoidal part of a three-dimensional vector field by its ray transforms along straight lines, parallel to the coordinate planes

    Sib. Zh. Vychisl. Mat., 15:3 (2012),  329–344
  18. Reconstruction of solenoidal $2$-tensor fields, given in a unit disk, in their longitudinal ray transforms

    Sib. Èlektron. Mat. Izv., 7 (2010),  139–149
  19. Reconstruction of 2-tensor fields, given in a unit circle, by their ray transforms based on LSM with $B$-splines

    Sib. Zh. Vychisl. Mat., 13:2 (2010),  183–199
  20. Использование $B$-сплайнов в задаче эмиссионной $2D$-томографии в рефрагирующей среде

    Sib. Zh. Ind. Mat., 11:3 (2008),  45–60

  21. Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography

    Sib. Èlektron. Mat. Izv., 10 (2013),  90–108


© Steklov Math. Inst. of RAS, 2024