RUS  ENG
Full version
PEOPLE

Galatenko Alexei Vladimirovich

Publications in Math-Net.Ru

  1. MaTIS – the school of V.B. Kudryavtsev: traditions and advancement

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 6,  15–26
  2. Generation of $n$-quasigroups by proper families of functions

    Diskr. Mat., 35:1 (2023),  35–53
  3. A criterion of properness for a family of functions

    Fundam. Prikl. Mat., 24:4 (2023),  61–73
  4. Proper families of functions and their applications

    Mat. Vopr. Kriptogr., 14:2 (2023),  43–58
  5. A mathematical model of within-host COVID-19 dynamics

    Dal'nevost. Mat. Zh., 22:2 (2022),  150–151
  6. Strong Polynomial Completeness of Almost All Quasigroups

    Mat. Zametki, 111:1 (2022),  8–14
  7. An algorithm for checking the existence of subquasigroups

    Chebyshevskii Sb., 22:2 (2021),  76–89
  8. Efficiency of deciding existence of $n$-subqusdigroups

    Intelligent systems. Theory and applications, 25:4 (2021),  104–107
  9. Generation of proper families of functions

    Intelligent systems. Theory and applications, 25:4 (2021),  100–103
  10. Generation of multivariate quadratic quasigroups by proper families of Boolean functions

    Fundam. Prikl. Mat., 23:2 (2020),  57–73
  11. Structural automaton design for solving the problem of exponential blowup for one class of regular languages

    Intelligent systems. Theory and applications, 23:4 (2019),  27–38
  12. Polynomial completeness of finite quasigroups

    Intelligent systems. Theory and applications, 23:1 (2019),  81–87
  13. Polynomially complete quasigroups of prime order

    Algebra Logika, 57:5 (2018),  509–521
  14. The complexity of checking the polynomial completeness of finite quasigroups

    Diskr. Mat., 30:4 (2018),  3–11
  15. Reports from the Automata Theory seminar

    Intelligent systems. Theory and applications, 22:4 (2018),  137–142
  16. О полиномиально полных квазигруппах простого порядка

    Intelligent systems. Theory and applications, 20:3 (2016),  194–198
  17. О сложности проверки существования доступа в RelBAC-политиках

    Intelligent systems. Theory and applications, 20:3 (2016),  189–193
  18. Comparing finite Abelian groups from the standpoint of their cryptographic applications

    Fundam. Prikl. Mat., 20:1 (2015),  9–16
  19. On Hamming distance between almost all Boolean functions

    Fundam. Prikl. Mat., 15:5 (2009),  43–47


© Steklov Math. Inst. of RAS, 2025