RUS  ENG
Full version
PEOPLE

Shalaevskii Oleg Victorovich

Publications in Math-Net.Ru

  1. Theorems on large deviations in schemes of smoothing observations with unknown weights

    Dokl. Akad. Nauk SSSR, 247:3 (1979),  565–569
  2. Theorem on large deviations for the generalized Student's ratio

    Zap. Nauchn. Sem. LOMI, 79 (1978),  82–96
  3. On approximation at the tails of certain distributions in mathematical statistics

    Dokl. Akad. Nauk SSSR, 237:2 (1977),  264–267
  4. On an approximate procedure while fitting the observations with unknown weights

    Zap. Nauchn. Sem. LOMI, 74 (1977),  139–144
  5. Some problems of asymptotic approximations of distributions

    Zap. Nauchn. Sem. LOMI, 74 (1977),  118–138
  6. $\chi^2$ as a criterium of homogeneity

    Zap. Nauchn. Sem. LOMI, 26 (1972),  118–123
  7. $\chi^2$ as a criterium of independence in a contingency table

    Zap. Nauchn. Sem. LOMI, 26 (1972),  88–117
  8. Admissibility of the estimate of least squares. Unusual property of the normal law

    Mat. Zametki, 6:1 (1969),  81–89
  9. Minimax character of the $R^2$-test. I

    Zap. Nauchn. Sem. LOMI, 13 (1969),  183–248
  10. Minimax character of Hotelling's $T^2$-test. I

    Zap. Nauchn. Sem. LOMI, 13 (1969),  138–182
  11. The minimax character of Hotelling's $T^2$ test

    Dokl. Akad. Nauk SSSR, 180:5 (1968),  1048–1050
  12. Equalization of observations with unknown weights by the method of least squares

    Trudy Mat. Inst. Steklov., 104 (1968),  189–214
  13. Characterization of the normal law by the property of partial sufficiency

    Teor. Veroyatnost. i Primenen., 12:3 (1967),  567–569
  14. A contribution to the theory of aproximately mindmax detecting of a vector signal in a Gaussian noise

    Teor. Veroyatnost. i Primenen., 12:3 (1967),  401–417
  15. On the theory of the Hotelling test

    Dokl. Akad. Nauk SSSR, 168:4 (1966),  743–746
  16. The problem of the distribution of observations in polynomial regression

    Trudy Mat. Inst. Steklov., 79 (1965),  132–149
  17. A remark on the theory of the Fisher–Welch–Wald test

    Teor. Veroyatnost. i Primenen., 10:4 (1965),  727–730
  18. The Behrens–Fisher problem for the existence of similar regions in an algebra of sufficient statistics

    Dokl. Akad. Nauk SSSR, 155:6 (1964),  1250–1252
  19. On the existence of similar tests for the Behrens–Fisher problem

    Dokl. Akad. Nauk SSSR, 154:4 (1964),  795–797
  20. On the non-existence of regularly varying tests for the Behrens–Fisher problem

    Dokl. Akad. Nauk SSSR, 151:3 (1963),  509–510
  21. On the analytic theory of tests for the Behrens–Fisher problem

    Dokl. Akad. Nauk SSSR, 150:1 (1963),  26–27
  22. A Short Proof of the Cramér–Rao Inequality

    Teor. Veroyatnost. i Primenen., 6:3 (1961),  352–353
  23. Some remarks on the adjustment of observations with unknown weights

    Dokl. Akad. Nauk SSSR, 130:1 (1960),  37–40

  24. Preface

    Zap. Nauchn. Sem. LOMI, 26 (1972),  4
  25. Preface

    Zap. Nauchn. Sem. LOMI, 13 (1969),  4


© Steklov Math. Inst. of RAS, 2024