RUS  ENG
Full version
PEOPLE

Ryzhkov Il'ya Igorevich

Publications in Math-Net.Ru

  1. Спектральные свойства фотонного кристалла с переменным периодом из анодного оксида алюминия

    Pis'ma v Zh. Èksper. Teoret. Fiz., 121:3 (2025),  184–188
  2. Determination of the refractive indices of photonic crystal layers from anodic alumina

    Zhurnal Tekhnicheskoi Fiziki, 94:2 (2024),  278–283
  3. Modelling the ionic conductivity of nanopores with electrically conductive surface

    J. Sib. Fed. Univ. Math. Phys., 14:1 (2021),  74–86
  4. Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface

    J. Sib. Fed. Univ. Math. Phys., 12:5 (2019),  579–589
  5. Theoretical study of electrolyte diffusion through polarizable nanopores

    J. Sib. Fed. Univ. Math. Phys., 11:4 (2018),  494–504
  6. Erratum to: “Effective molecular dynamics model of ionic solutions for large-scale calculations”

    Prikl. Mekh. Tekh. Fiz., 59:2 (2018),  228
  7. Effective molecular dynamics model of ionic solutions for large-scale calculations

    Prikl. Mekh. Tekh. Fiz., 59:1 (2018),  49–60
  8. Finite ion size effects on electrolyte transport in nanofiltration membranes

    J. Sib. Fed. Univ. Math. Phys., 10:2 (2017),  186–198
  9. On thermocapillary instability of a liquid column with a co-axial gas flow

    J. Sib. Fed. Univ. Math. Phys., 6:1 (2013),  3–17
  10. Group properties and exact solutions of equations for vibrational convection of a binary mixture

    Prikl. Mekh. Tekh. Fiz., 52:4 (2011),  72–83
  11. On the Boussinesq approximation in the problems of convection induced by high–frequency vibration

    J. Sib. Fed. Univ. Math. Phys., 3:4 (2010),  433–449
  12. Symmetry Analysis of Equations for Convection in Binary Mixture

    J. Sib. Fed. Univ. Math. Phys., 1:4 (2008),  410–431
  13. Invariant solutions of the thermal-diffusion equations for a binary mixture in the case of plane motion

    Prikl. Mekh. Tekh. Fiz., 47:1 (2006),  95–108
  14. Symmetry Classification and Exact Solutions of the Thermal Diffusion Equations

    Differ. Uravn., 41:4 (2005),  508–517


© Steklov Math. Inst. of RAS, 2025