|
|
Publications in Math-Net.Ru
-
Deformation of structural elements made of alloys with reduced resistance to creep in shear direction
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:3 (2015), 34–41
-
About the creep theory of the strain-hardening materials
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(36) (2014), 106–117
-
Creep theory inverse problem for non-work-hardening body
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014), 115–124
-
Construction of constitutive equations of creep in orthotropic materials with different properties under tension and compression
Prikl. Mekh. Tekh. Fiz., 53:6 (2012), 98–101
-
Some three-dimensional problems for an elastic medium with isolated rigid inclusions
Prikl. Mekh. Tekh. Fiz., 52:3 (2011), 175–180
-
Determination of stresses in ellipsoidal rigid inclusions
Prikl. Mekh. Tekh. Fiz., 51:3 (2010), 107–111
-
On determining stresses in rigid inclusions. Plane problems
Prikl. Mekh. Tekh. Fiz., 50:4 (2009), 183–186
-
Multimodulus elasticity theory
Prikl. Mekh. Tekh. Fiz., 49:1 (2008), 157–164
-
Creep of plates made of aluminum alloys under bending
Prikl. Mekh. Tekh. Fiz., 48:5 (2007), 156–159
-
On an inverse problem of bending of a physically nonlinear inhomogeneous plate
Prikl. Mekh. Tekh. Fiz., 48:5 (2007), 104–107
-
Bending of elastic plates with a physically nonlinear inclusion
Prikl. Mekh. Tekh. Fiz., 47:6 (2006), 152–157
-
On the $(u,p)$ problem in the theory of elasticity
Prikl. Mekh. Tekh. Fiz., 47:3 (2006), 100–103
-
Some geometrically nonlinear problems of deformation of inelastic plates and shallow shells
Prikl. Mekh. Tekh. Fiz., 46:2 (2005), 151–157
-
Physically nonlinear ellipsoidal inclusion in a linearly elastic medium
Prikl. Mekh. Tekh. Fiz., 45:1 (2004), 84–91
-
Some inverse problems of deformation and fracture of physically nonlinear inhomogeneous media
Prikl. Mekh. Tekh. Fiz., 44:5 (2003), 138–143
-
Inverse problem of deformation of a physically nonlinear inhomogeneous medium
Prikl. Mekh. Tekh. Fiz., 43:3 (2002), 125–128
-
Determination of the strength characteristics of a physically nonlinear inclusion in a linearly elastic medium
Prikl. Mekh. Tekh. Fiz., 41:4 (2000), 178–184
-
An inverse elastoplastic problem for plates
Prikl. Mekh. Tekh. Fiz., 40:4 (1999), 186–194
-
Inverse problems of deformation of nonlinear viscoelastic bodies
Prikl. Mekh. Tekh. Fiz., 38:3 (1997), 140–151
-
On one class of inverse problems of variation in shape of viscoelastic plates
Prikl. Mekh. Tekh. Fiz., 37:6 (1996), 122–131
-
Determining the elastic characteristics of homogeneous anisotropic bodies
Prikl. Mekh. Tekh. Fiz., 35:3 (1994), 145–149
-
A class of inverse creep theory problems
Prikl. Mekh. Tekh. Fiz., 30:2 (1989), 163–173
-
Inverse problem of membrane deformation under creep conditions
Prikl. Mekh. Tekh. Fiz., 26:5 (1985), 158–163
-
Solution of some problems of the theory of creep by the small parameter method
Prikl. Mekh. Tekh. Fiz., 23:2 (1982), 122–127
-
In Memory of Oleg Vasil'evich Sosnin
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(19) (2009), 6–8
© , 2024