RUS  ENG
Full version
PEOPLE

Tsvelodub Igor' Yur'evich

Publications in Math-Net.Ru

  1. Deformation of structural elements made of alloys with reduced resistance to creep in shear direction

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:3 (2015),  34–41
  2. About the creep theory of the strain-hardening materials

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(36) (2014),  106–117
  3. Creep theory inverse problem for non-work-hardening body

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014),  115–124
  4. Construction of constitutive equations of creep in orthotropic materials with different properties under tension and compression

    Prikl. Mekh. Tekh. Fiz., 53:6 (2012),  98–101
  5. Some three-dimensional problems for an elastic medium with isolated rigid inclusions

    Prikl. Mekh. Tekh. Fiz., 52:3 (2011),  175–180
  6. Determination of stresses in ellipsoidal rigid inclusions

    Prikl. Mekh. Tekh. Fiz., 51:3 (2010),  107–111
  7. On determining stresses in rigid inclusions. Plane problems

    Prikl. Mekh. Tekh. Fiz., 50:4 (2009),  183–186
  8. Multimodulus elasticity theory

    Prikl. Mekh. Tekh. Fiz., 49:1 (2008),  157–164
  9. Creep of plates made of aluminum alloys under bending

    Prikl. Mekh. Tekh. Fiz., 48:5 (2007),  156–159
  10. On an inverse problem of bending of a physically nonlinear inhomogeneous plate

    Prikl. Mekh. Tekh. Fiz., 48:5 (2007),  104–107
  11. Bending of elastic plates with a physically nonlinear inclusion

    Prikl. Mekh. Tekh. Fiz., 47:6 (2006),  152–157
  12. On the $(u,p)$ problem in the theory of elasticity

    Prikl. Mekh. Tekh. Fiz., 47:3 (2006),  100–103
  13. Some geometrically nonlinear problems of deformation of inelastic plates and shallow shells

    Prikl. Mekh. Tekh. Fiz., 46:2 (2005),  151–157
  14. Physically nonlinear ellipsoidal inclusion in a linearly elastic medium

    Prikl. Mekh. Tekh. Fiz., 45:1 (2004),  84–91
  15. Some inverse problems of deformation and fracture of physically nonlinear inhomogeneous media

    Prikl. Mekh. Tekh. Fiz., 44:5 (2003),  138–143
  16. Inverse problem of deformation of a physically nonlinear inhomogeneous medium

    Prikl. Mekh. Tekh. Fiz., 43:3 (2002),  125–128
  17. Determination of the strength characteristics of a physically nonlinear inclusion in a linearly elastic medium

    Prikl. Mekh. Tekh. Fiz., 41:4 (2000),  178–184
  18. An inverse elastoplastic problem for plates

    Prikl. Mekh. Tekh. Fiz., 40:4 (1999),  186–194
  19. Inverse problems of deformation of nonlinear viscoelastic bodies

    Prikl. Mekh. Tekh. Fiz., 38:3 (1997),  140–151
  20. On one class of inverse problems of variation in shape of viscoelastic plates

    Prikl. Mekh. Tekh. Fiz., 37:6 (1996),  122–131
  21. Determining the elastic characteristics of homogeneous anisotropic bodies

    Prikl. Mekh. Tekh. Fiz., 35:3 (1994),  145–149
  22. A class of inverse creep theory problems

    Prikl. Mekh. Tekh. Fiz., 30:2 (1989),  163–173
  23. Inverse problem of membrane deformation under creep conditions

    Prikl. Mekh. Tekh. Fiz., 26:5 (1985),  158–163
  24. Solution of some problems of the theory of creep by the small parameter method

    Prikl. Mekh. Tekh. Fiz., 23:2 (1982),  122–127

  25. In Memory of Oleg Vasil'evich Sosnin

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(19) (2009),  6–8


© Steklov Math. Inst. of RAS, 2024