|
|
Publications in Math-Net.Ru
-
Ill-posedness of the Tricomi problem for a multidimensional mixed hyperbolic-parabolic equation
Chebyshevskii Sb., 25:5 (2024), 5–15
-
A criterion for the unique solvability of the spectral Poincare problem for a class of multidimensional hyperbolic equations
Chebyshevskii Sb., 24:1 (2023), 194–202
-
The Tricomi Problem for a Class of Multidimensional Hyperbolic-Elliptic Equations
Mat. Zametki, 113:5 (2023), 646–654
-
The Tricomi problem for a class of multidimensional mixed hyperbolic-parabolic equations
Mathematical Physics and Computer Simulation, 25:2 (2022), 5–16
-
The Tricomi problem for some classes of multidimensional mixed hyperbolic-parabolic equations
Applied Mathematics & Physics, 53:4 (2021), 284–292
-
Well-posedness of the main mixed problem for the multidimensional lavrentiev — bitsadze equation
Vestnik SamU. Estestvenno-Nauchnaya Ser., 27:3 (2021), 7–13
-
The criterion for the unique solvability of the Dirichlet and Poincare spectral problems for the multidimensional Euler - Darboux - Poisson equation
Applied Mathematics & Physics, 52:2 (2020), 139–145
-
Well-posedness of a mixed type problem for the multidimensional hyperbolic-parabolic equation
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 574–582
-
Tricomi problem for multidimensional mixed hyperbolic-parabolic equation
Vestnik SamU. Estestvenno-Nauchnaya Ser., 26:4 (2020), 7–14
-
Nonlocal boundary-value problems in the cylindrical domain for the multidimensional Laplace equation
Izv. Saratov Univ. Math. Mech. Inform., 19:1 (2019), 16–23
-
The correctness of a mixed problem for one class of degenerated multidimensional elliptic equations
Applied Mathematics & Physics, 51:2 (2019), 174–182
-
Correctness of a mixed problem for degenerate three-dimensional hyperbolic-parabolic equations
Vestnik SamU. Estestvenno-Nauchnaya Ser., 25:4 (2019), 7–13
-
The correctness of a Dirichlet type problem for the degenerate multidimensional hyperbolic-elliptic equations
Vestnik SamU. Estestvenno-Nauchnaya Ser., 25:1 (2019), 7–20
-
Well-posedness of the Dirichlet problem in a multidimensional domain for a hyperbolic-parabolic equation
Mathematical Physics and Computer Simulation, 22:3 (2019), 32–40
-
A criterion for the unique solvability of the spectral Dirichlet problem for a class of multidimensional hyperbolic-parabolic equations
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018), 225–235
-
The correctness of a Dirichlet type problem in a cylindrical domain for the multidimensional Lavrentiev–Bitsadze equation
Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:1 (2018), 7–13
-
The criterion of unique solvability of the Dirichlet spectral problem in the cylindrical domain for a class of multi-dimensional hyperbolic-elliptic equations
Mathematical Physics and Computer Simulation, 21:4 (2018), 5–17
-
Well-posedness of the Dirichlet problem for one class of degenerate multi-dimensional hyperbolic-parabolic equations
Izv. Saratov Univ. Math. Mech. Inform., 17:3 (2017), 244–254
-
Well-posedness of the Dirichlet and Poincaré problems for one class of hyperbolic equations in a multidimensional domain
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017), 209–220
-
The correctness of the Dirichlet problem in a cylindrical domain for degenerate multidimensional elliptic-parabolic equations
Vestnik SamU. Estestvenno-Nauchnaya Ser., 2017, no. 3, 7–11
-
Well-posedness of the Dirichlet problem for a class of multidimensional elliptic-parabolic equations
Izv. Saratov Univ. Math. Mech. Inform., 16:2 (2016), 125–132
-
Multidimensional Dirichlet's problem for one class singular hyperbolic equalizations
Applied Mathematics & Physics, 43:13 (2016), 18–23
-
Correctness of the local boundary value problem in a cylindrical domain for one class of multidimensional elliptic equations
Vestnik SamU. Estestvenno-Nauchnaya Ser., 2016, no. 1-2, 7–17
-
Correctness of the local boundary value problem in a cylindrical domain for Laplace's many-dimensional equation
Izv. Saratov Univ. Math. Mech. Inform., 15:4 (2015), 365–371
-
The well-posed of the local boundary value problem in cylindrical domain for multisize hyperbolic equations with wave operator
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:4 (2015), 3–11
-
Well-posedness of the Dirichlet problem in a cylindrical domain for multidimensional elliptic-parabolic equation
Izv. Saratov Univ. Math. Mech. Inform., 14:1 (2014), 5–10
-
Correctness of Dirichlet problem for degenerating multi-dimensional hyperbolic-parabolic equations
Vladikavkaz. Mat. Zh., 16:4 (2014), 3–8
-
A criterion for the unique solvability of the Dirichlet spectral problem in a cylindrical domain for multidimensional hyperbolic equations with wave operator
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(36) (2014), 21–30
-
Well-posedness of Poincare problem in the cylindrical domain for a class of multi-dimensional elliptic equations
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2014, no. 10(121), 17–25
-
Well-Posedness of the Dirichlet Problem in a Cylindrical Domain for Degenerating Multidimensional Elliptic Equations
Mat. Zametki, 94:6 (2013), 936–939
-
The well-posedness of the Dirichlet and Poincare problems in a cylindric domain for the multi-dimensional Chapligin equation
Vladikavkaz. Mat. Zh., 15:2 (2013), 3–10
-
Criterion for the Uniqueness of the Regular Solution of the Dirichlet and Poincare Problems for the Multi-Dimensional Euler — Darboux — Poisson Equation
Dal'nevost. Mat. Zh., 12:2 (2012), 127–135
-
The correctness of the Dirichlet problem in the cylindric domain for equation Laplase
Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012), 3–7
-
The correctness of the Dirichlet problem in the cylindric domain for one class of multi-dimensional elliptic equations
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:1 (2012), 7–13
-
The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(29) (2012), 48–55
-
A criterion for the unique solvability of the Dirichlet spectral problem in a cylindrical domain for a multi-dimensional Lavrent'ev–Bitsadze equation
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 4, 3–7
-
Darboux–Protter problems for degenerate multidimensional hyperbolic equations
Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 9, 3–9
-
A criterion for the existence of eigenfunctions of the spectral Darboux–Protter problems for the multidimensional Euler–Darboux–Poisson equation
Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 2, 3–10
-
A Criterion for the Existence of Eigenfunctions of the Darboux–Protter Spectral Problem for
Degenerating Multidimensional Hyperbolic Equations
Differ. Uravn., 41:6 (2005), 795–801
-
On Darboux problems for a class of multidimensional hyperbolic equations
Differ. Uravn., 34:1 (1998), 64–68
-
On a property of solutions of a class of partial differential equations
Differ. Uravn., 30:2 (1994), 327–329
-
Multidimensional Darboux problems for degenerate hyperbolic equations
Differ. Uravn., 29:12 (1993), 2097–2103
-
Properties of solutions of partial differential equations that decompose into factors with singularities
Differ. Uravn., 20:1 (1984), 168–171
-
A Darboux problem for the multidimensional wave equation
Differ. Uravn., 19:11 (1983), 1985–1988
-
A priori estimates for the Tricomi and Darboux problems
Differ. Uravn., 19:6 (1983), 985–991
-
Some local and nonlocal boundary value problems for the wave equation
Differ. Uravn., 19:1 (1983), 3–8
-
Some boundary value problems for a multidimensional wave equation
Dokl. Akad. Nauk SSSR, 265:6 (1982), 1289–1292
-
On some multidimensional analogues of Darboux problems for the wave equation
Differ. Uravn., 18:2 (1982), 254–260
-
The Cauchy problem for operators that decompose into factors with singularities
Differ. Uravn., 17:2 (1981), 247–255
-
A Darboux problem for the Euler–Darboux–Poisson equation
Differ. Uravn., 16:1 (1980), 161–163
-
The Cauchy problem for a $2n$th order equation
Differ. Uravn., 15:11 (1979), 2085–2087
-
Some boundary value problems for a certain class of singular partial differential equations
Differ. Uravn., 12:1 (1976), 3–14
-
A certain property of the solutions of the singular Cauchy problem for the Euler-Darboux-Poisson equation
Differ. Uravn., 11:1 (1975), 3–7
© , 2025