RUS  ENG
Full version
PEOPLE

Aldashev Serik Aimurzaevich

Publications in Math-Net.Ru

  1. Ill-posedness of the Tricomi problem for a multidimensional mixed hyperbolic-parabolic equation

    Chebyshevskii Sb., 25:5 (2024),  5–15
  2. A criterion for the unique solvability of the spectral Poincare problem for a class of multidimensional hyperbolic equations

    Chebyshevskii Sb., 24:1 (2023),  194–202
  3. The Tricomi Problem for a Class of Multidimensional Hyperbolic-Elliptic Equations

    Mat. Zametki, 113:5 (2023),  646–654
  4. The Tricomi problem for a class of multidimensional mixed hyperbolic-parabolic equations

    Mathematical Physics and Computer Simulation, 25:2 (2022),  5–16
  5. The Tricomi problem for some classes of multidimensional mixed hyperbolic-parabolic equations

    Applied Mathematics & Physics, 53:4 (2021),  284–292
  6. Well-posedness of the main mixed problem for the multidimensional lavrentiev — bitsadze equation

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 27:3 (2021),  7–13
  7. The criterion for the unique solvability of the Dirichlet and Poincare spectral problems for the multidimensional Euler - Darboux - Poisson equation

    Applied Mathematics & Physics, 52:2 (2020),  139–145
  8. Well-posedness of a mixed type problem for the multidimensional hyperbolic-parabolic equation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020),  574–582
  9. Tricomi problem for multidimensional mixed hyperbolic-parabolic equation

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 26:4 (2020),  7–14
  10. Nonlocal boundary-value problems in the cylindrical domain for the multidimensional Laplace equation

    Izv. Saratov Univ. Math. Mech. Inform., 19:1 (2019),  16–23
  11. The correctness of a mixed problem for one class of degenerated multidimensional elliptic equations

    Applied Mathematics & Physics, 51:2 (2019),  174–182
  12. Correctness of a mixed problem for degenerate three-dimensional hyperbolic-parabolic equations

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 25:4 (2019),  7–13
  13. The correctness of a Dirichlet type problem for the degenerate multidimensional hyperbolic-elliptic equations

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 25:1 (2019),  7–20
  14. Well-posedness of the Dirichlet problem in a multidimensional domain for a hyperbolic-parabolic equation

    Mathematical Physics and Computer Simulation, 22:3 (2019),  32–40
  15. A criterion for the unique solvability of the spectral Dirichlet problem for a class of multidimensional hyperbolic-parabolic equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018),  225–235
  16. The correctness of a Dirichlet type problem in a cylindrical domain for the multidimensional Lavrentiev–Bitsadze equation

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:1 (2018),  7–13
  17. The criterion of unique solvability of the Dirichlet spectral problem in the cylindrical domain for a class of multi-dimensional hyperbolic-elliptic equations

    Mathematical Physics and Computer Simulation, 21:4 (2018),  5–17
  18. Well-posedness of the Dirichlet problem for one class of degenerate multi-dimensional hyperbolic-parabolic equations

    Izv. Saratov Univ. Math. Mech. Inform., 17:3 (2017),  244–254
  19. Well-posedness of the Dirichlet and Poincaré problems for one class of hyperbolic equations in a multidimensional domain

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017),  209–220
  20. The correctness of the Dirichlet problem in a cylindrical domain for degenerate multidimensional elliptic-parabolic equations

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 2017, no. 3,  7–11
  21. Well-posedness of the Dirichlet problem for a class of multidimensional elliptic-parabolic equations

    Izv. Saratov Univ. Math. Mech. Inform., 16:2 (2016),  125–132
  22. Multidimensional Dirichlet's problem for one class singular hyperbolic equalizations

    Applied Mathematics & Physics, 43:13 (2016),  18–23
  23. Correctness of the local boundary value problem in a cylindrical domain for one class of multidimensional elliptic equations

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 2016, no. 1-2,  7–17
  24. Correctness of the local boundary value problem in a cylindrical domain for Laplace's many-dimensional equation

    Izv. Saratov Univ. Math. Mech. Inform., 15:4 (2015),  365–371
  25. The well-posed of the local boundary value problem in cylindrical domain for multisize hyperbolic equations with wave operator

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:4 (2015),  3–11
  26. Well-posedness of the Dirichlet problem in a cylindrical domain for multidimensional elliptic-parabolic equation

    Izv. Saratov Univ. Math. Mech. Inform., 14:1 (2014),  5–10
  27. Correctness of Dirichlet problem for degenerating multi-dimensional hyperbolic-parabolic equations

    Vladikavkaz. Mat. Zh., 16:4 (2014),  3–8
  28. A criterion for the unique solvability of the Dirichlet spectral problem in a cylindrical domain for multidimensional hyperbolic equations with wave operator

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(36) (2014),  21–30
  29. Well-posedness of Poincare problem in the cylindrical domain for a class of multi-dimensional elliptic equations

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2014, no. 10(121),  17–25
  30. Well-Posedness of the Dirichlet Problem in a Cylindrical Domain for Degenerating Multidimensional Elliptic Equations

    Mat. Zametki, 94:6 (2013),  936–939
  31. The well-posedness of the Dirichlet and Poincare problems in a cylindric domain for the multi-dimensional Chapligin equation

    Vladikavkaz. Mat. Zh., 15:2 (2013),  3–10
  32. Criterion for the Uniqueness of the Regular Solution of the Dirichlet and Poincare Problems for the Multi-Dimensional Euler — Darboux — Poisson Equation

    Dal'nevost. Mat. Zh., 12:2 (2012),  127–135
  33. The correctness of the Dirichlet problem in the cylindric domain for equation Laplase

    Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012),  3–7
  34. The correctness of the Dirichlet problem in the cylindric domain for one class of multi-dimensional elliptic equations

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:1 (2012),  7–13
  35. The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(29) (2012),  48–55
  36. A criterion for the unique solvability of the Dirichlet spectral problem in a cylindrical domain for a multi-dimensional Lavrent'ev–Bitsadze equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 4,  3–7
  37. Darboux–Protter problems for degenerate multidimensional hyperbolic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 9,  3–9
  38. A criterion for the existence of eigenfunctions of the spectral Darboux–Protter problems for the multidimensional Euler–Darboux–Poisson equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 2,  3–10
  39. A Criterion for the Existence of Eigenfunctions of the Darboux–Protter Spectral Problem for Degenerating Multidimensional Hyperbolic Equations

    Differ. Uravn., 41:6 (2005),  795–801
  40. On Darboux problems for a class of multidimensional hyperbolic equations

    Differ. Uravn., 34:1 (1998),  64–68
  41. On a property of solutions of a class of partial differential equations

    Differ. Uravn., 30:2 (1994),  327–329
  42. Multidimensional Darboux problems for degenerate hyperbolic equations

    Differ. Uravn., 29:12 (1993),  2097–2103
  43. Properties of solutions of partial differential equations that decompose into factors with singularities

    Differ. Uravn., 20:1 (1984),  168–171
  44. A Darboux problem for the multidimensional wave equation

    Differ. Uravn., 19:11 (1983),  1985–1988
  45. A priori estimates for the Tricomi and Darboux problems

    Differ. Uravn., 19:6 (1983),  985–991
  46. Some local and nonlocal boundary value problems for the wave equation

    Differ. Uravn., 19:1 (1983),  3–8
  47. Some boundary value problems for a multidimensional wave equation

    Dokl. Akad. Nauk SSSR, 265:6 (1982),  1289–1292
  48. On some multidimensional analogues of Darboux problems for the wave equation

    Differ. Uravn., 18:2 (1982),  254–260
  49. The Cauchy problem for operators that decompose into factors with singularities

    Differ. Uravn., 17:2 (1981),  247–255
  50. A Darboux problem for the Euler–Darboux–Poisson equation

    Differ. Uravn., 16:1 (1980),  161–163
  51. The Cauchy problem for a $2n$th order equation

    Differ. Uravn., 15:11 (1979),  2085–2087
  52. Some boundary value problems for a certain class of singular partial differential equations

    Differ. Uravn., 12:1 (1976),  3–14
  53. A certain property of the solutions of the singular Cauchy problem for the Euler-Darboux-Poisson equation

    Differ. Uravn., 11:1 (1975),  3–7


© Steklov Math. Inst. of RAS, 2025