RUS  ENG
Full version
PEOPLE

Shafranov Dmitriy Eugen'evich

Publications in Math-Net.Ru

  1. Numerical solutions for the Cauchy problem for the Oskolkov equation in the spaces of differential forms with stochastic coefficients

    J. Comp. Eng. Math., 10:2 (2023),  42–51
  2. Spaces of differential forms with stochastic complex-valued coefficients

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:2 (2023),  21–25
  3. Numerical solutions for nonclassical equations in the space of differential forms

    J. Comp. Eng. Math., 9:4 (2022),  3–17
  4. Sobolev type equations in spaces of differential forms on Riemannian manifolds without boundary

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  112–122
  5. Numerical solution of the hoff equation with additive "white noise"' in spaces of differential forms on a torus

    J. Comp. Eng. Math., 8:2 (2021),  46–55
  6. On numerical solution in the space of differential forms for one stochastic Sobolev-type equation with a relatively radial operator

    J. Comp. Eng. Math., 7:4 (2020),  48–55
  7. Numerical solution of the Dzektser equation with “white noise” in the space of smooth differential forms defined on a torus

    J. Comp. Eng. Math., 7:2 (2020),  58–65
  8. Numerical solution of the Barenblatt – Zheltov – Kochina equation with additive "white noise" in spaces of differential forms on a torus

    J. Comp. Eng. Math., 6:4 (2019),  31–43
  9. Exponential dichotomies in Barenblatt– Zheltov–Kochina model in spaces of differential forms with “noise”

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  47–57
  10. Solvability of the Showalter–Sidorov problem for Sobolev type equations with operators in the form of first-order polynomials from the Laplace–Beltrami operator on differential forms

    J. Comp. Eng. Math., 4:3 (2017),  27–34
  11. The splitting of the domain of the definition of the elliptic self-adjoint pseudodifferential operator

    J. Comp. Eng. Math., 2:3 (2015),  60–64
  12. The Hoff Equation as a Model of Elastic Shell

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 12,  77–81
  13. Задача Коши для уравнения Баренблатта–Желтова–Кочиной на гладком многообразии

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 9,  171–177
  14. Задача Коши для линейного уравнения Осколкова на гладком многообразии

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 7,  146–153

  15. Alexander Leonidovich Shestakov (to Anniversary Since Birth)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  142–146
  16. Георгий Анатольевич Свиридюк (к юбилею)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  123–127
  17. To the 65th anniversary of professor G. A. Sviridyuk

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017),  155–158


© Steklov Math. Inst. of RAS, 2024