RUS  ENG
Full version
PEOPLE

Bufetov Igor' Alekseevich

Publications in Math-Net.Ru

  1. Hollow-core optical fibers: current state and development prospects

    UFN, 194:2 (2024),  138–168
  2. Properties of a microwave discharge in a hollow-core fiber of a gas-discharge fiber laser

    Kvantovaya Elektronika, 53:10 (2023),  755–760
  3. Coherent mid-IR supercontinuum in a hollow core fiber filled with a mixture of deuterium and nitrogen

    Kvantovaya Elektronika, 53:5 (2023),  387–394
  4. Threshold characteristics of the 1.56 → 2.84 μm Raman transformation in methane under broadband pumping by powerful frequency-modulated pulses of erbium fiber source

    Kvantovaya Elektronika, 53:5 (2023),  363–369
  5. Picosecond Raman fibre laser with a wavelength of 2.84 μm

    Kvantovaya Elektronika, 52:8 (2022),  685–694
  6. 1.56-to-2.84 μm SRS conversion of chirped pulses of a high-power erbium fibre laser in a methane-filled hollow-core revolver fibre

    Kvantovaya Elektronika, 52:3 (2022),  274–277
  7. Mid-IR supercontinuum generation initiated by two-cascade stimulated Raman scattering in D2-filled revolver fibre

    Kvantovaya Elektronika, 51:12 (2021),  1068–1075
  8. Spectral diagnostics of an optical discharge propagating along a hollow-core optical fibre

    Kvantovaya Elektronika, 51:3 (2021),  232–239
  9. Propagation of megawatt subpicosecond light pulses with the minimum possible shape and spectrum distortion in an air- or argon-filled hollow-core revolver fibre

    Kvantovaya Elektronika, 49:12 (2019),  1100–1107
  10. SRS generation of femtosecond pulses in a methane-filled revolver hollow-core optical fibre

    Kvantovaya Elektronika, 49:12 (2019),  1089–1092
  11. Optical discharge propagation along hollow-core optical fibres

    Kvantovaya Elektronika, 48:12 (2018),  1138–1142
  12. 4.4-μm Raman generation with an average power above 1 W in silica revolver fibre

    Kvantovaya Elektronika, 48:12 (2018),  1084–1088
  13. Fibre-optic 100 fs pulse amplification and transmission system in the telecom range

    Kvantovaya Elektronika, 48:7 (2018),  589–595
  14. Mid-IR hollow-core silica fibre Raman lasers

    Kvantovaya Elektronika, 47:12 (2017),  1078–1082
  15. Yu. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, I. A. Bufetov. Multiband supercontinuum generation in an air-core revolver fibre (“Kvantovaya Elektronika”, 47:6 (2017), 553–560)

    Kvantovaya Elektronika, 47:7 (2017),  674
  16. Multiband supercontinuum generation in an air-core revolver fibre

    Kvantovaya Elektronika, 47:6 (2017),  553–560
  17. 4.4-μm Raman laser based on hollow-core silica fibre

    Kvantovaya Elektronika, 47:5 (2017),  491–494
  18. Hollow-core microstructured 'revolver' fibre for the UV spectral range

    Kvantovaya Elektronika, 46:12 (2016),  1129–1133
  19. Propagation of femtosecond pulses in a hollow-core revolver fibre

    Kvantovaya Elektronika, 46:7 (2016),  617–626
  20. Hollow-core revolver fibre with a double-capillary reflective cladding

    Kvantovaya Elektronika, 46:3 (2016),  267–270
  21. New generation of optical fibres

    Kvantovaya Elektronika, 46:1 (2016),  1–10
  22. Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre

    Kvantovaya Elektronika, 45:9 (2015),  807–812
  23. Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region

    Kvantovaya Elektronika, 45:1 (2015),  59–65
  24. Superfluorescent 1.34 μm bismuth-doped fibre source

    Kvantovaya Elektronika, 44:7 (2014),  700–702
  25. IR luminescence in bismuth-doped germanate glasses and fibres

    Kvantovaya Elektronika, 43:2 (2013),  174–176
  26. Bismuth-doped Mg — Al silicate glasses and fibres

    Kvantovaya Elektronika, 42:9 (2012),  770–773
  27. Optical properties of bismuth-doped silica fibres in the temperature range 300 — 1500 K

    Kvantovaya Elektronika, 42:9 (2012),  762–769
  28. Optical properties of IR-emitting centres in Pb-doped silica fibres

    Kvantovaya Elektronika, 42:4 (2012),  310–314
  29. Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm

    Kvantovaya Elektronika, 41:7 (2011),  581–583
  30. Optical properties of active bismuth centres in silica fibres containing no other dopants

    Kvantovaya Elektronika, 40:7 (2010),  639–641
  31. Bismuth-doped fibre amplifier for the range 1300 — 1340 nm

    Kvantovaya Elektronika, 39:12 (2009),  1099–1101
  32. Bi-doped fibre lasers operating in the range 1470 — 1550 nm

    Kvantovaya Elektronika, 39:4 (2009),  299–301
  33. Bi-doped fibre lasers and amplifiers emitting in a spectral region of 1.3 μm

    Kvantovaya Elektronika, 38:7 (2008),  615–617
  34. Propagation of an optical discharge through optical fibres upon interference of modes

    Kvantovaya Elektronika, 38:5 (2008),  441–444
  35. Detonation-like mode of the destruction of optical fibers under intense laser radiation

    Pis'ma v Zh. Èksper. Teoret. Fiz., 83:2 (2006),  84–88
  36. Ytterbium fibre laser with a heavily Yb3+-doped glass fibre core

    Kvantovaya Elektronika, 36:3 (2006),  189–191
  37. Pump radiation distribution in multi-element first cladding laser fibres

    Kvantovaya Elektronika, 35:11 (2005),  996–1002
  38. 7-W single-mode thulium-doped fibre laser pumped at 1230 nm

    Kvantovaya Elektronika, 35:7 (2005),  586–590
  39. Raman fibre lasers based on heavily GeO2-doped fibres

    Kvantovaya Elektronika, 35:5 (2005),  435–441
  40. Yb-, Er–Yb-, and Nd-doped fibre lasers based on multi-element first cladding fibres

    Kvantovaya Elektronika, 35:4 (2005),  328–334
  41. Optical discharge in optical fibers

    UFN, 175:1 (2005),  100–103
  42. Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3

    Kvantovaya Elektronika, 34:9 (2004),  843–848
  43. Raman fibre lasers emitting at a wavelength above 2 μm

    Kvantovaya Elektronika, 34:8 (2004),  695–697
  44. The fibre fuse effect in microstructured fibres

    Kvantovaya Elektronika, 34:1 (2004),  59–61
  45. Efficient 0.9-μm neodymium-doped single-mode fibre laser

    Kvantovaya Elektronika, 33:12 (2003),  1035–1037
  46. Catastrophic destruction of optical fibres of various composition caused by laser radiation

    Kvantovaya Elektronika, 32:6 (2002),  476–478
  47. A simple analytic model of a cw multicascade fibre Raman laser

    Kvantovaya Elektronika, 30:10 (2000),  873–877
  48. Continuous-wave highly efficient phosphosilicate fibre-based Raman laser (λ = 1.24 μm)

    Kvantovaya Elektronika, 29:2 (1999),  97–100
  49. Feasibility of constructing a UV fibre laser based on a nitrogen-doped silica optical fibre

    Kvantovaya Elektronika, 25:4 (1998),  348–350
  50. Continuous-wave Cr4+:Mg2SiO4 laser pumped by neodymium fibre-laser radiation

    Kvantovaya Elektronika, 24:9 (1997),  771–772
  51. High-power single-mode neodymium fibre laser

    Kvantovaya Elektronika, 24:1 (1997),  3–4
  52. Thermodynamic parameters of a nanosecond plasma formed on a solid target in the radiation field of harmonics of a high-power neodymium laser emitting pulses with a steep leading edge

    Kvantovaya Elektronika, 23:6 (1996),  535–538
  53. Plasma heating near a metal target by nanosecond pulses of the first, second, and fourth Nd-laser harmonics

    Kvantovaya Elektronika, 22:8 (1995),  825–829
  54. Spatial distribution of laser radiation scattered in a plasma formed by optical breakdown of a gas

    Kvantovaya Elektronika, 21:12 (1994),  1177–1182
  55. Structure of a wave-front of optical discharge subsonic combustion in the air

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:7 (1987),  397–400
  56. Propagation of an optical flame along a tube

    Fizika Goreniya i Vzryva, 22:3 (1986),  18–29
  57. Diagnostics of an optical discharge plasma sustained in atmospheric air by neodymium laser radiation

    Kvantovaya Elektronika, 13:9 (1986),  1875–1884
  58. THRESHOLD CONDITIONS OF THE IGNITION AND PROPAGATION OF THE OPTICAL DISCHARGE IN THE NEODYMIUM LASER RAY

    Zhurnal Tekhnicheskoi Fiziki, 55:1 (1985),  96–102
  59. THE FORMATION OF CONSTANT PRESSURE LONGITUDINAL OPTIC DISCHARGES

    Zhurnal Tekhnicheskoi Fiziki, 53:1 (1983),  194–196
  60. Two gasdynamic propagation regimes of a subsonic optical discharge

    Kvantovaya Elektronika, 10:9 (1983),  1817–1824
  61. Hot gas cloud hydrodynamic relaxation after the laser air breakdown

    Dokl. Akad. Nauk SSSR, 261:3 (1981),  586–588
  62. Propagation of a slow optical deflagration wave in air in a neodymium laser beam

    Kvantovaya Elektronika, 8:4 (1981),  751–759
  63. Millisecond neodymium-glass laser characterized by a high output energy and a high directionality of radiation

    Kvantovaya Elektronika, 1:7 (1974),  1544–1550
  64. Intensive evaporation of germanium and silicon by millisecond laser radiation pulses

    Kvantovaya Elektronika, 1:2 (1974),  436–439

  65. In memory of Vyacheslav Vasil'evich Osiko

    Kvantovaya Elektronika, 50:1 (2020),  94
  66. Evgeny Mikhailovich Dianov (on his 80th birthday)

    UFN, 186:1 (2016),  111–112


© Steklov Math. Inst. of RAS, 2024