RUS  ENG
Full version
PEOPLE

Dmitruk Nataliya Mikhailovna

Publications in Math-Net.Ru

  1. A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024),  122–138
  2. A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems

    Bulletin of Irkutsk State University. Series Mathematics, 46 (2023),  19–34
  3. Closed-loop state feedback in linear problems of terminal control

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224 (2023),  43–53
  4. Optimal control of linear time-invariant discrete-time systems without prior parametric identification

    Avtomat. i Telemekh., 2022, no. 2,  3–21
  5. Multiply Closed Control Strategy in a Linear Terminal Problem of Optimal Guaranteed Control

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:3 (2022),  66–82
  6. Improving the quality of the control process in a linear terminal problem on optimal strategies with closures

    Tr. Inst. Mat., 29:1-2 (2021),  74–84
  7. On the problem of optimal control of dynamic systems in real time

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 183 (2020),  98–112
  8. Stabilization of coupled linear systems via bounded distributed feedbacks

    Bulletin of Irkutsk State University. Series Mathematics, 30 (2019),  31–44
  9. Optimal strategy with one closing instant for a linear optimal guaranteed control problem

    Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018),  664–681
  10. Asymptotically suboptimal control of weakly interconnected dynamical systems

    Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016),  1711–1724
  11. Optimal observation of multistage systems

    Zh. Vychisl. Mat. Mat. Fiz., 54:11 (2014),  1734–1751
  12. On optimal control methods to dynamical object at its approaching to a mobile aim

    Bulletin of Irkutsk State University. Series Mathematics, 4:2 (2011),  60–74
  13. Decentralized optimal control of dynamical systems under uncertainty

    Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011),  1209–1227
  14. Optimal control problems with moving targets

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  16–21
  15. Optimal control under permanent disturbances

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  52–68
  16. Decentralized optimal control of a group of dynamical objects

    Zh. Vychisl. Mat. Mat. Fiz., 48:4 (2008),  593–609
  17. Parallelization of computations in the optimal control of large dynamical systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 12,  3–20
  18. Optimal guaranteed control of delay systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:2 (2006),  27–46
  19. Numerical optimization of time-dependent multidimensional systems under polyhedral constraints

    Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005),  617–636
  20. Optimal control of multidimensional systems by inaccurate measurements of their output signals

    Trudy Inst. Mat. i Mekh. UrO RAN, 10:2 (2004),  35–57
  21. The indirect optimal control of dynamical systems

    Zh. Vychisl. Mat. Mat. Fiz., 44:3 (2004),  444–466
  22. Optimization of the Multidimensional Control Systems with Parallelepiped Constraints

    Avtomat. i Telemekh., 2002, no. 3,  3–26
  23. The Optimal Policy for Dividends, Investments, and Capital Distribution for a Dynamic Model of a Company

    Avtomat. i Telemekh., 2001, no. 8,  138–156
  24. Design of an optimal policy for an industrial-financial model of a firm. II. Programmed and positional solutions

    Avtomat. i Telemekh., 1998, no. 10,  95–112
  25. Design of an optimal policy for an industrial-financial model of a firm. I. Construction of routes

    Avtomat. i Telemekh., 1998, no. 9,  100–117

  26. A method for constructing an optimal control strategy in a linear terminal problem

    Journal of the Belarusian State University. Mathematics and Informatics, 2 (2021),  38–50
  27. Rafail Gabasov — on the occasion of the 80th birthday

    Bulletin of Irkutsk State University. Series Mathematics, 15 (2016),  108–120


© Steklov Math. Inst. of RAS, 2024