RUS  ENG
Full version
PEOPLE

Pimenov Vladimir Germanovich

Publications in Math-Net.Ru

  1. Asymptotics of a compact scheme for solving a superdiffusion equation with several variable delays

    Izv. IMI UdGU, 65 (2025),  54–71
  2. Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  138–151
  3. A compact scheme for solving a superdiffusion equationwith several variable delays

    Russian Universities Reports. Mathematics, 29:148 (2024),  440–454
  4. Asymptotic expansion of the error of the numerical method for solving wave equation with functional delay

    Izv. IMI UdGU, 62 (2023),  71–86
  5. Richardson Method for a Diffusion Equation with Functional Delay

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  133–144
  6. Numerical methods for systems of diffusion and superdiffusion equations with Neumann boundary conditions and with delay

    Dal'nevost. Mat. Zh., 22:2 (2022),  218–224
  7. Numerical method for system of space-fractional equations of superdiffusion type with delay and Neumann boundary conditions

    Izv. IMI UdGU, 59 (2022),  41–54
  8. Numerical method for fractional diffusion-wave equations with functional delay

    Izv. IMI UdGU, 57 (2021),  156–169
  9. Crank-Nicolson scheme for two-dimensional in space fractional diffusion equations with functional delay

    Izv. IMI UdGU, 57 (2021),  128–141
  10. Numerical solving of partial differential equations with heredity and nonlinearity in the differential operator

    Sib. Èlektron. Mat. Izv., 16 (2019),  1587–1599
  11. Numerical method for fractional advection-diffusion equation with heredity

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017),  86–90
  12. An implicit numerical method for the solution of the fractional advection-diffusion equation with delay

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  218–226
  13. Fractional analog of crank-nicholson method for the two sided space fractional partial equation with functional delay

    Ural Math. J., 2:1 (2016),  48–57
  14. One-step numerical methods for mixed functional differential equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015),  187–197
  15. Grid methods of solving advection equations with delay

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 3,  59–74
  16. Numerical methods for solving the evolutionary equations with delay

    Izv. IMI UdGU, 2012, no. 1(39),  103–104
  17. Numerical methods for solving a hereditary equation of hyperbolic type

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012),  222–231
  18. Difference schemes for the numerical solution of the heat conduction equation with aftereffect

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  178–189
  19. Difference schemes in modeling evolutionary control systems with delay

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  151–158
  20. Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010),  102–118
  21. A semiexplicit method for numerical solution of functional differential algebraic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 5,  62–67
  22. Numerical methods of solution for heat equation with delay

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  113–116
  23. Multistep numerical methods for functional-differential-algebraic equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007),  145–155
  24. Numerical methods for solving initial and boundary value problems for functional differential equations

    Izv. IMI UdGU, 2002, no. 2(25),  75–78
  25. General Linear Methods for the Numerical Solution of Functional-Differential Equations

    Differ. Uravn., 37:1 (2001),  105–114
  26. Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998),  119–142
  27. The concept of generalized controls for functional-differential systems

    Differ. Uravn., 31:6 (1995),  980–989
  28. On the existence of generalized optimal controls in systems with delay in the control

    Differ. Uravn., 27:12 (1991),  2174–2176


© Steklov Math. Inst. of RAS, 2025