|
|
Publications in Math-Net.Ru
-
An attack on 6-round XSL-block ciphers
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 115–117
-
On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 16–19
-
Multipermutations on the Cartesian product of groups and their properties
Mat. Vopr. Kriptogr., 14:4 (2023), 111–142
-
On group properties of classes Source-Heavy and Target-Heavy Feistel block ciphers with round functions linear dependent on round keys parts
Mat. Vopr. Kriptogr., 14:3 (2023), 127–155
-
Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO
Prikl. Diskr. Mat., 2023, no. 62, 29–54
-
The boomerang attack on the 4-round LILLIPUT-TBC-II-256 cipher
Prikl. Diskr. Mat. Suppl., 2023, no. 16, 81–84
-
Multipermutations and perfect diffusion of partitions
Prikl. Diskr. Mat. Suppl., 2023, no. 16, 8–11
-
Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups
Diskr. Mat., 34:2 (2022), 50–66
-
Classes of piecewise-quasiaffine transformations on the generalized 2-group of quaternions
Diskr. Mat., 34:1 (2022), 103–125
-
Generalized quasi-Hadamard transformations on finite groups
Mat. Vopr. Kriptogr., 13:4 (2022), 97–124
-
The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$
Mat. Vopr. Kriptogr., 13:3 (2022), 107–130
-
On a set of impossible differences of Feistel ciphers with a non-bijective transform of a round function
Prikl. Diskr. Mat. Suppl., 2022, no. 15, 49–51
-
Diffusion properties of generalized quasi-Hadamard transformations on finite Abelian groups
Prikl. Diskr. Mat. Suppl., 2022, no. 15, 14–17
-
Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$
Mat. Vopr. Kriptogr., 12:4 (2021), 65–85
-
On ARX-like ciphers based on different codings of $2$-groups with a cyclic subgroup of index $2$
Prikl. Diskr. Mat. Suppl., 2021, no. 14, 100–104
-
Nonabelian key addition groups and $\otimes _{\mathbf{W}}$-markovian property of block ciphers
Mat. Vopr. Kriptogr., 11:4 (2020), 107–131
-
Characterization of mappings by the nonisometricity property
Mat. Vopr. Kriptogr., 10:4 (2019), 77–116
-
$\otimes_{\mathbf{W}}$-markovianity of XSL-block ciphers connected with properties of their round functions
Mat. Vopr. Kriptogr., 10:1 (2019), 115–142
-
On APN-functions and division property of multisets
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 237–239
-
On properties of the largest probability for difference transition under a random bijective group mapping
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 203–205
-
On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index $2$
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 27–29
-
Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 24–27
-
Classification of distance-transitive orbital graphs of overgroups of the Jevons group
Diskr. Mat., 30:4 (2018), 66–87
-
Permutation homomorphisms of block ciphers and ${\otimes _{\mathbf{W}}}$-Markovian property
Mat. Vopr. Kriptogr., 9:3 (2018), 109–126
-
Group properties of block ciphers of the Russian standards GOST R 34.11-2012 and GOST R 34.12-2015
Mat. Vopr. Kriptogr., 9:2 (2018), 59–70
-
On integral distinguishers of block ciphers based on generalized Feistel schemes
Prikl. Diskr. Mat. Suppl., 2018, no. 11, 87–89
-
On nonabelian key addition groups and markovian block ciphers
Prikl. Diskr. Mat. Suppl., 2018, no. 11, 79–81
-
Partitions on bigrams and Markov property of block ciphers
Mat. Vopr. Kriptogr., 8:1 (2017), 107–142
-
On properties of $W$-permutations over the residue ring
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 92–93
-
On the anisometric index of a transformation
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 25–27
-
On groups containing the additive group of the residue ring or the vector space
Diskr. Mat., 28:4 (2016), 100–121
-
On the group generated by the round functions of the block cipher Kuznechik
Prikl. Diskr. Mat. Suppl., 2016, no. 9, 43–45
-
On the classification of distance-transitive orbital graphs of overgroups of the Jevons group
Prikl. Diskr. Mat. Suppl., 2016, no. 9, 16–18
-
On groups generated by mixed type permutations and key addition groups
Prikl. Diskr. Mat. Suppl., 2016, no. 9, 14–16
-
Orbital derivatives over subgroups and their combinatorial and group-theoretic properties
Diskr. Mat., 27:4 (2015), 94–119
-
Overgroups of order ${2^n}$ additive regular groups of a residue ring and of a vector space
Diskr. Mat., 27:3 (2015), 74–94
-
Orbital derivatives on the residue ring. Part II. Probabilistic and combinatorial properties
Mat. Vopr. Kriptogr., 6:1 (2015), 117–133
-
Bounds for the number of rounds with impossible differences in generalized Feistel schemes
Prikl. Diskr. Mat., 2015, no. 1(27), 37–51
-
$\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers
Prikl. Diskr. Mat. Suppl., 2015, no. 8, 69–71
-
$\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations
Prikl. Diskr. Mat. Suppl., 2015, no. 8, 17–19
-
Properties of the group generated by translation groups of the vector space and the residue ring
Prikl. Diskr. Mat. Suppl., 2015, no. 8, 15–16
-
On the distance from permutations to the union of all imprimitive groups with identical parameters of imprimitivity systems
Diskr. Mat., 26:1 (2014), 103–117
-
Orbital derivatives on residue rings. Part I. General properties
Mat. Vopr. Kriptogr., 5:4 (2014), 99–127
-
On probabilities of $r$-round differences of a Markov XSL block cipher with a reducible linear transformation
Prikl. Diskr. Mat. Suppl., 2014, no. 7, 52–54
-
On generalizations of Markov's approach to research of block ciphers
Prikl. Diskr. Mat. Suppl., 2014, no. 7, 51–52
-
On the distance from permutations to imprimitive groups for a fixed system of imprimitivity
Diskr. Mat., 25:3 (2013), 78–95
-
Combinatorial characterization of XL-layers
Mat. Vopr. Kriptogr., 4:3 (2013), 99–129
-
An attack on the GOST 28147-89 block cipher with 12 related keys
Mat. Vopr. Kriptogr., 4:2 (2013), 127–152
-
On classes of weak keys of generalized cryptosystem PRINT
Mat. Vopr. Kriptogr., 4:2 (2013), 113–125
-
Factor structures of transformations
Mat. Vopr. Kriptogr., 3:3 (2012), 81–104
-
Natural metrics and their properties. P. 2. Hamming-type metrics
Mat. Vopr. Kriptogr., 3:1 (2012), 71–95
-
Properties of $X,S$-layers
Prikl. Diskr. Mat. Suppl., 2012, no. 5, 26–28
-
On combinatorial properties of the group generated by $XL$ layers
Prikl. Diskr. Mat. Suppl., 2012, no. 5, 22–23
-
Natural metrics and their properties. P. 1. Submetrics and overmetrics
Mat. Vopr. Kriptogr., 2:4 (2011), 49–74
-
On impossible truncated differentials of XSL ciphers
Prikl. Diskr. Mat., 2011, no. supplement № 4, 38–39
-
On approximation of permutations by imprimitive groups
Prikl. Diskr. Mat., 2011, no. supplement № 4, 17–18
-
Properties of graphs of orbitals for overgroups of the Jevons group
Mat. Vopr. Kriptogr., 1:1 (2010), 55–83
-
Differential attack on 6-round Whirlpool-like block ciphers
Prikl. Diskr. Mat., 2010, no. supplement № 3, 30–31
-
Attacks on full block cipher GOST 28147-89 with 2 or 4 related keys
Prikl. Diskr. Mat., 2010, no. supplement № 3, 29–30
-
On weak key-scheduling algorithms relatively the related-key attack
Prikl. Diskr. Mat., 2010, no. supplement № 3, 27–29
-
On 2-transitivity of generalized Feistel ciphers
Prikl. Diskr. Mat., 2009, no. supplement № 1, 24–26
-
Properties of Feistel's ciphers relative to two wreath products
Prikl. Diskr. Mat., 2008, no. 2(2), 58–61
-
Linear structures of permutation groups over finite modules
Prikl. Diskr. Mat., 2008, no. 1(1), 25–28
-
Hamming submetrics and their isometry groups
Tr. Diskr. Mat., 11:2 (2008), 147–191
-
Submetrics of a Hamming metric and trasforms which disseminate corruptions with a given multiplicity
Tr. Diskr. Mat., 10 (2007), 202–238
-
An overview of the Eight International Olympiad in Cryptography “Non-Stop University CRYPTO”
Sib. Èlektron. Mat. Izv., 19:1 (2022), 9–37
-
The Seventh International Olympiad in Cryptography: problems and solutions
Sib. Èlektron. Mat. Izv., 18:2 (2021), 4–29
-
On the Sixth International Olympiad in Cryptography NSUCRYPTO
Diskretn. Anal. Issled. Oper., 27:4 (2020), 21–57
© , 2024