RUS  ENG
Full version
PEOPLE

Pudovkina Marina Aleksandrovna

Publications in Math-Net.Ru

  1. An attack on 6-round XSL-block ciphers

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  115–117
  2. On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  16–19
  3. Multipermutations on the Cartesian product of groups and their properties

    Mat. Vopr. Kriptogr., 14:4 (2023),  111–142
  4. On group properties of classes Source-Heavy and Target-Heavy Feistel block ciphers with round functions linear dependent on round keys parts

    Mat. Vopr. Kriptogr., 14:3 (2023),  127–155
  5. Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO

    Prikl. Diskr. Mat., 2023, no. 62,  29–54
  6. The boomerang attack on the 4-round LILLIPUT-TBC-II-256 cipher

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  81–84
  7. Multipermutations and perfect diffusion of partitions

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  8–11
  8. Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups

    Diskr. Mat., 34:2 (2022),  50–66
  9. Classes of piecewise-quasiaffine transformations on the generalized 2-group of quaternions

    Diskr. Mat., 34:1 (2022),  103–125
  10. Generalized quasi-Hadamard transformations on finite groups

    Mat. Vopr. Kriptogr., 13:4 (2022),  97–124
  11. The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$

    Mat. Vopr. Kriptogr., 13:3 (2022),  107–130
  12. On a set of impossible differences of Feistel ciphers with a non-bijective transform of a round function

    Prikl. Diskr. Mat. Suppl., 2022, no. 15,  49–51
  13. Diffusion properties of generalized quasi-Hadamard transformations on finite Abelian groups

    Prikl. Diskr. Mat. Suppl., 2022, no. 15,  14–17
  14. Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$

    Mat. Vopr. Kriptogr., 12:4 (2021),  65–85
  15. On ARX-like ciphers based on different codings of $2$-groups with a cyclic subgroup of index $2$

    Prikl. Diskr. Mat. Suppl., 2021, no. 14,  100–104
  16. Nonabelian key addition groups and $\otimes _{\mathbf{W}}$-markovian property of block ciphers

    Mat. Vopr. Kriptogr., 11:4 (2020),  107–131
  17. Characterization of mappings by the nonisometricity property

    Mat. Vopr. Kriptogr., 10:4 (2019),  77–116
  18. $\otimes_{\mathbf{W}}$-markovianity of XSL-block ciphers connected with properties of their round functions

    Mat. Vopr. Kriptogr., 10:1 (2019),  115–142
  19. On APN-functions and division property of multisets

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  237–239
  20. On properties of the largest probability for difference transition under a random bijective group mapping

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  203–205
  21. On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index $2$

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  27–29
  22. Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  24–27
  23. Classification of distance-transitive orbital graphs of overgroups of the Jevons group

    Diskr. Mat., 30:4 (2018),  66–87
  24. Permutation homomorphisms of block ciphers and ${\otimes _{\mathbf{W}}}$-Markovian property

    Mat. Vopr. Kriptogr., 9:3 (2018),  109–126
  25. Group properties of block ciphers of the Russian standards GOST R 34.11-2012 and GOST R 34.12-2015

    Mat. Vopr. Kriptogr., 9:2 (2018),  59–70
  26. On integral distinguishers of block ciphers based on generalized Feistel schemes

    Prikl. Diskr. Mat. Suppl., 2018, no. 11,  87–89
  27. On nonabelian key addition groups and markovian block ciphers

    Prikl. Diskr. Mat. Suppl., 2018, no. 11,  79–81
  28. Partitions on bigrams and Markov property of block ciphers

    Mat. Vopr. Kriptogr., 8:1 (2017),  107–142
  29. On properties of $W$-permutations over the residue ring

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  92–93
  30. On the anisometric index of a transformation

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  25–27
  31. On groups containing the additive group of the residue ring or the vector space

    Diskr. Mat., 28:4 (2016),  100–121
  32. On the group generated by the round functions of the block cipher Kuznechik

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  43–45
  33. On the classification of distance-transitive orbital graphs of overgroups of the Jevons group

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  16–18
  34. On groups generated by mixed type permutations and key addition groups

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  14–16
  35. Orbital derivatives over subgroups and their combinatorial and group-theoretic properties

    Diskr. Mat., 27:4 (2015),  94–119
  36. Overgroups of order ${2^n}$ additive regular groups of a residue ring and of a vector space

    Diskr. Mat., 27:3 (2015),  74–94
  37. Orbital derivatives on the residue ring. Part II. Probabilistic and combinatorial properties

    Mat. Vopr. Kriptogr., 6:1 (2015),  117–133
  38. Bounds for the number of rounds with impossible differences in generalized Feistel schemes

    Prikl. Diskr. Mat., 2015, no. 1(27),  37–51
  39. $\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  69–71
  40. $\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  17–19
  41. Properties of the group generated by translation groups of the vector space and the residue ring

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  15–16
  42. On the distance from permutations to the union of all imprimitive groups with identical parameters of imprimitivity systems

    Diskr. Mat., 26:1 (2014),  103–117
  43. Orbital derivatives on residue rings. Part I. General properties

    Mat. Vopr. Kriptogr., 5:4 (2014),  99–127
  44. On probabilities of $r$-round differences of a Markov XSL block cipher with a reducible linear transformation

    Prikl. Diskr. Mat. Suppl., 2014, no. 7,  52–54
  45. On generalizations of Markov's approach to research of block ciphers

    Prikl. Diskr. Mat. Suppl., 2014, no. 7,  51–52
  46. On the distance from permutations to imprimitive groups for a fixed system of imprimitivity

    Diskr. Mat., 25:3 (2013),  78–95
  47. Combinatorial characterization of XL-layers

    Mat. Vopr. Kriptogr., 4:3 (2013),  99–129
  48. An attack on the GOST 28147-89 block cipher with 12 related keys

    Mat. Vopr. Kriptogr., 4:2 (2013),  127–152
  49. On classes of weak keys of generalized cryptosystem PRINT

    Mat. Vopr. Kriptogr., 4:2 (2013),  113–125
  50. Factor structures of transformations

    Mat. Vopr. Kriptogr., 3:3 (2012),  81–104
  51. Natural metrics and their properties. P. 2. Hamming-type metrics

    Mat. Vopr. Kriptogr., 3:1 (2012),  71–95
  52. Properties of $X,S$-layers

    Prikl. Diskr. Mat. Suppl., 2012, no. 5,  26–28
  53. On combinatorial properties of the group generated by $XL$ layers

    Prikl. Diskr. Mat. Suppl., 2012, no. 5,  22–23
  54. Natural metrics and their properties. P. 1. Submetrics and overmetrics

    Mat. Vopr. Kriptogr., 2:4 (2011),  49–74
  55. On impossible truncated differentials of XSL ciphers

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  38–39
  56. On approximation of permutations by imprimitive groups

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  17–18
  57. Properties of graphs of orbitals for overgroups of the Jevons group

    Mat. Vopr. Kriptogr., 1:1 (2010),  55–83
  58. Differential attack on 6-round Whirlpool-like block ciphers

    Prikl. Diskr. Mat., 2010, no. supplement № 3,  30–31
  59. Attacks on full block cipher GOST 28147-89 with 2 or 4 related keys

    Prikl. Diskr. Mat., 2010, no. supplement № 3,  29–30
  60. On weak key-scheduling algorithms relatively the related-key attack

    Prikl. Diskr. Mat., 2010, no. supplement № 3,  27–29
  61. On 2-transitivity of generalized Feistel ciphers

    Prikl. Diskr. Mat., 2009, no. supplement № 1,  24–26
  62. Properties of Feistel's ciphers relative to two wreath products

    Prikl. Diskr. Mat., 2008, no. 2(2),  58–61
  63. Linear structures of permutation groups over finite modules

    Prikl. Diskr. Mat., 2008, no. 1(1),  25–28
  64. Hamming submetrics and their isometry groups

    Tr. Diskr. Mat., 11:2 (2008),  147–191
  65. Submetrics of a Hamming metric and trasforms which disseminate corruptions with a given multiplicity

    Tr. Diskr. Mat., 10 (2007),  202–238

  66. An overview of the Eight International Olympiad in Cryptography “Non-Stop University CRYPTO”

    Sib. Èlektron. Mat. Izv., 19:1 (2022),  9–37
  67. The Seventh International Olympiad in Cryptography: problems and solutions

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  4–29
  68. On the Sixth International Olympiad in Cryptography NSUCRYPTO

    Diskretn. Anal. Issled. Oper., 27:4 (2020),  21–57


© Steklov Math. Inst. of RAS, 2024