RUS  ENG
Full version
PEOPLE

Kurchatov V A

Publications in Math-Net.Ru

  1. On the efficiency of the secant and Newton methods

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 1,  76–80
  2. Optimization with respect to accuracy of calculations of some sets of numerical methods based on linearization

    Differ. Uravn., 27:11 (1991),  1959–1963
  3. Optimization, with respect to the number of arithmetic operations and entropy, of difference methods of linearization

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 4,  33–37
  4. The linearization method for solution of equations with discontinuous operators

    Differ. Uravn., 21:9 (1985),  1596–1603
  5. Optimization of methods of difference linearizations with inaccurate initial data

    Zh. Vychisl. Mat. Mat. Fiz., 23:3 (1983),  526–535
  6. A method of difference linearization, absolutely optimal in exactness, for solution of some classes of operator equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 9,  25–35
  7. L. V. Kantorovič's theorem for a class of methods of linearization of the approximate solution of functional equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 11,  56–59
  8. Approximate solution of functional equations with nondifferentiable operators by the linearization method. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 8,  46–51
  9. The method of linearized residuals for the approximate solution of functional equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 1,  27–33
  10. A difference linearization method that is optimal with respect to the order of error of numerical differentiation

    Zh. Vychisl. Mat. Mat. Fiz., 20:4 (1980),  827–840
  11. The method of linearized residuals for accelerating the convergence of an iteration method

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 8,  34–44
  12. Approximate solution of functional equations with nondifferentiable operators by the linearization method. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 7,  53–61
  13. Conditions for the convergence of a linearization method

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 7,  51–56
  14. A method for the approximate solution of systems of nonlinear differential equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 5,  79–83
  15. A way of accelerating the convergence of iteration processes

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 3,  43–47
  16. A class of linearization methods

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 2,  45–53
  17. A formula for sharpening the approximations of an iteration process

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 11,  46–49
  18. The efficiency of the method of symmetric difference linearization for the solution of functional equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 10,  86–99
  19. A third order iterative method for the solution of nonlinear functional equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 12,  51–56
  20. A relaxation method for the linearization of the approximate solution of functional equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 4,  130–133
  21. Solution of functional equations with operators that have singular points

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 9,  101–104
  22. Conditions for the applicability of a certain linear interpolation method of solving functional equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 8,  55–63
  23. The conditions for the convergence of an iteration process of order $(k+1)$ for the solution of nonlinear functional equations in the case of structurally stable initial data

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 4,  37–41
  24. Approximate solution of nonlinear functional equations by the method of iteration with a variable iteration operator

    Sibirsk. Mat. Zh., 15:5 (1974),  1143–1151
  25. On a method of linear interpolation for the solution of functional equations

    Dokl. Akad. Nauk SSSR, 198:3 (1971),  524–526
  26. A certain method of solving nonlinear functional equations

    Dokl. Akad. Nauk SSSR, 189:2 (1969),  247–249


© Steklov Math. Inst. of RAS, 2024