RUS  ENG
Full version
PEOPLE

Shumilov Boris Mikhailovich

Publications in Math-Net.Ru

  1. Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval

    Sib. Èlektron. Mat. Izv., 17 (2020),  2105–2121
  2. About semi-orthogonal spline-wavelets with derivatives, and the algorithm with splitting

    Sib. Zh. Vychisl. Mat., 20:1 (2017),  107–120
  3. A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid

    Zh. Vychisl. Mat. Mat. Fiz., 57:10 (2017),  1600–1614
  4. Splitting algorithms for the wavelet transform of first-degree splines on nonuniform grids

    Zh. Vychisl. Mat. Mat. Fiz., 56:7 (2016),  1236–1247
  5. A splitting algorithm for wavelet transforms of the Hermite splines of the seventh degree

    Sib. Zh. Vychisl. Mat., 18:4 (2015),  453–467
  6. Multiwavelets of the third degree Hermitian splines, orthogonal to cubic polynomials

    Mat. Model., 25:4 (2013),  17–28
  7. Cubic multiwavelets orthogonal to polynomials and a splitting algorithm

    Sib. Zh. Vychisl. Mat., 16:3 (2013),  287–301
  8. Construction and optimization of predictions on the basis of first degree recurrent splines

    Sib. Zh. Vychisl. Mat., 13:2 (2010),  227–241
  9. An algorithm with splitting of the wavelet transform of Hermitian cubic splines

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 4(12),  45–55
  10. Parametric Identification of Nonlinear Differential Equations by the Method of Spline Diagrams Taking Exact Values on Polynomials

    Avtomat. i Telemekh., 1997, no. 5,  53–63
  11. Recurrent approximation by splines

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 1,  85–87
  12. Spline approximate schemes that are exact for polynomials

    Zh. Vychisl. Mat. Mat. Fiz., 32:8 (1992),  1187–1196
  13. Smooth interpolation of surfaces by parametric splines of the second degree on an irregular triangular grid

    Zh. Vychisl. Mat. Mat. Fiz., 32:5 (1992),  802–807
  14. Local approximation of plane curves by splines of the first degree in the Hausdorff metric

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 8,  80–81
  15. Recursive interpolation by cubic splines with additional nodes

    Zh. Vychisl. Mat. Mat. Fiz., 30:2 (1990),  179–185
  16. Local interpolation on a uniform triangular grid by splines of the fourth degree of smoothness $C^1$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 5,  77–81
  17. On Lagrange interpolation by parabolic splines with additional knots

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 1,  58–62
  18. Local uniformly minimal approximation by splines

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 12,  72–75

  19. A book of splines. A. Sard and S. Weintraub. xi + 817 p. John Wiley and Sons, Inc., New York–London–Sydney–Toronto, 1971. Book review

    Zh. Vychisl. Mat. Mat. Fiz., 14:3 (1974),  808


© Steklov Math. Inst. of RAS, 2025