RUS  ENG
Full version
PEOPLE

Davidovich Mikhail Vladimirovich

Publications in Math-Net.Ru

  1. Metal film on a substrate in a magnetic field as a microwave–terahertz magnetoplasmon slowing system

    Pis'ma v Zh. Èksper. Teoret. Fiz., 119:3 (2024),  187–200
  2. Influence of spatial dispersion on plasmons along graphene sheets

    Zhurnal Tekhnicheskoi Fiziki, 94:3 (2024),  385–399
  3. Thermal-field emission in nanostructures with resonant tunneling

    Zhurnal Tekhnicheskoi Fiziki, 94:1 (2024),  32–47
  4. Correlation relations for graphene and its thermal radiation

    Izv. Sarat. Univ. Physics, 23:2 (2023),  167–178
  5. Resonant tunneling of photons in layered optical nanostructures (metamaterials)

    Zhurnal Tekhnicheskoi Fiziki, 93:4 (2023),  495–504
  6. Dyakonov plasmon-polaritones along a hyperbolic metamaterial surface

    Computer Optics, 45:1 (2021),  48–57
  7. Nonlinear tunneling of electromagnetic wave through a plasma layer

    Izv. Sarat. Univ. Physics, 21:2 (2021),  116–132
  8. Nonlinear problem of temperature distribution inside the Earth

    Izvestiya VUZ. Applied Nonlinear Dynamics, 28:2 (2020),  140–157
  9. Backward Zenneck wave along flat the media boundary

    Optics and Spectroscopy, 128:9 (2020),  1269–1276
  10. Dyakonov plasmon polaritons, extending along the surfaces of a hyperbolic metamaterial

    Optics and Spectroscopy, 128:4 (2020),  556–563
  11. The energy transfer velocity by a plane monochromatic electromagnetic wave through a layer of matter

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:1 (2020),  22–40
  12. Optical, IR and THz screens based on layered metal-dielectric-semiconductor structures

    Computer Optics, 43:5 (2019),  765–772
  13. Plasmon-polaritons along the asymmetric hyperbolic metamaterial

    Izv. Sarat. Univ. Physics, 19:4 (2019),  288–303
  14. Negative dispersion, refraction and backward polaritons: impedance approach

    Izv. Sarat. Univ. Physics, 19:2 (2019),  95–112
  15. Nonlinear temperature waves: Analysis based on the nonlinear heat equation

    Izvestiya VUZ. Applied Nonlinear Dynamics, 27:6 (2019),  73–90
  16. Time-dependent resonant tunneling in a double-barrier diode structure

    Pis'ma v Zh. Èksper. Teoret. Fiz., 110:7 (2019),  465–473
  17. Pulsed and static field emission vac of carbon nanocluster structures: experiment and its interpretation

    Zhurnal Tekhnicheskoi Fiziki, 89:8 (2019),  1282–1293
  18. Slow-wave system of double shifted impedance comb

    Zhurnal Tekhnicheskoi Fiziki, 89:2 (2019),  280–296
  19. Dispersion of surface plasmons in structures with a conducting film

    Optics and Spectroscopy, 126:3 (2019),  360–369
  20. Localised plasmons in sphere-like fullerenes and nanoparticles with conducting shells: Classical electrodynamic approach

    Kvantovaya Elektronika, 49:9 (2019),  868–877
  21. Hyperbolic metamaterials: production, properties, applications, and prospects

    UFN, 189:12 (2019),  1249–1284
  22. Diamagnetism and paramagnetism of a metamaterial consisting of rings with a current

    Pis'ma v Zh. Èksper. Teoret. Fiz., 108:5 (2018),  299–306
  23. Field-emission staggered structure based on diamond–graphite clusters

    Zhurnal Tekhnicheskoi Fiziki, 88:2 (2018),  283–293
  24. The graphene based terahertz transistor

    Izv. Sarat. Univ. Physics, 17:1 (2017),  44–54
  25. Landauer–Datta–Lundstrom model for terahertz transistor amplifier based on graphene

    Zhurnal Tekhnicheskoi Fiziki, 87:8 (2017),  1206–1215
  26. Maximum deceleration and negative dispersion of plasmons along a metal layer

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 43:22 (2017),  55–62
  27. Plasmons in multilayered plane-stratified structures

    Kvantovaya Elektronika, 47:6 (2017),  567–579
  28. About the definition of a nonlinear inductance in static and dynamic regimes

    Izv. Sarat. Univ. Physics, 16:1 (2016),  33–43
  29. Modeling of radio-frequency identification tags antennas

    Izvestiya VUZ. Applied Nonlinear Dynamics, 23:1 (2015),  76–91
  30. Using parallel computing technologies for modeling of metallic photonic crystals

    Izv. Saratov Univ. Math. Mech. Inform., 13:2(1) (2013),  86–90
  31. The perspective slow-wave systems of terahertz band for TWT

    Izv. Sarat. Univ. Physics, 12:2 (2012),  64–75
  32. The conservation laws and the densities of electromagnetic field energy and momentum in dispersive media

    Izv. Sarat. Univ. Physics, 12:1 (2012),  46–54
  33. Why the refractive index couldn't be negative

    Izv. Sarat. Univ. Physics, 11:1 (2011),  42–47
  34. On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting plate

    UFN, 180:6 (2010),  623–638
  35. On conservation lows for energy and momentum in electromagnetic field in media and under plane wave diffraction on conducting plate

    Izv. Sarat. Univ. Physics, 9:2 (2009),  65–89
  36. Integral equations for photonic crystal fibers

    Izv. Sarat. Univ. Physics, 9:1 (2009),  2–17
  37. 0n the Hartman paradox, electromagnetic wave tunneling and superluminal velocities (comment on “Tunneling of electromagnetic waves: paradoxes and prospects” by A. B. Shvartsburg)

    UFN, 179:4 (2009),  443–446
  38. Disclosure of objects in multilayared media by waveguide probe

    Izv. Sarat. Univ. Physics, 8:2 (2008),  3–11
  39. Dielectric resonators: the integral and integrodifferential equations methods

    Izv. Sarat. Univ. Physics, 8:1 (2008),  3–14
  40. Diffraction of flat electromagnrtic wave on non-linear dielectric slab

    Izv. Sarat. Univ. Physics, 7:1 (2007),  32–40
  41. Nonstationary excitation of open structures

    Izv. Sarat. Univ. Physics, 5:1 (2005),  68–83

  42. Comment on “Plasmons in waveguide structures formed by two graphene layers”

    Pis'ma v Zh. Èksper. Teoret. Fiz., 109:11 (2019),  803–804
  43. On the analytical signal and Yu. N. Zajko article «A history of One "Artefact"»

    Izv. Sarat. Univ. Physics, 14:2 (2014),  79–84
  44. The memory of Prozorkevich Alexandr Vasil'evich

    Izv. Sarat. Univ. Physics, 13:2 (2013),  88–89


© Steklov Math. Inst. of RAS, 2024