|
|
Publications in Math-Net.Ru
-
Primal–dual Newton method with steepest descent for the linear semidefinite programming problem: iterative process
Zh. Vychisl. Mat. Mat. Fiz., 62:4 (2022), 597–615
-
Primal–dual Newton method with steepest descent for the linear semidefinite programming problem: Newton's system of equations
Zh. Vychisl. Mat. Mat. Fiz., 62:2 (2022), 232–248
-
Primal Newton method for the linear cone programming problem
Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018), 220–227
-
A variant of the affine-scaling method for a cone programming problem on a second-order cone
Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017), 114–124
-
A variant of the dual simplex method for a linear semidefinite programming problem
Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016), 90–100
-
A feasible dual affine scaling steepest descent method for the linear semidefinite programming problem
Zh. Vychisl. Mat. Mat. Fiz., 56:7 (2016), 1248–1266
-
On a variant of the simplex method for a linear semidefinite programming problem
Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 117–127
-
On a variant of a feasible affine scaling method for semidefinite programming
Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 145–160
-
Primal-dual Newton method for a linear problem of semidefinite programming
Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013), 157–169
-
An admissible dual internal point method for a linear semidefinite programming problem
Avtomat. i Telemekh., 2012, no. 2, 25–40
-
On convergence of the dual Newton method for linear semidefinite programming problem
Bulletin of Irkutsk State University. Series Mathematics, 4:2 (2011), 75–90
-
Dual interior point methods for linear semidefinite programming problems
Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011), 2158–2180
-
Direct newton method for a linear problem of semidefinite programming
Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008), 67–80
-
A primal interior point method for the linear semidefinite programming problem
Zh. Vychisl. Mat. Mat. Fiz., 48:10 (2008), 1780–1801
-
The steepest-descent barrier-projection method for linear complementarity problems
Zh. Vychisl. Mat. Mat. Fiz., 45:5 (2005), 792–812
-
Convergence of the primal-dual Newton method for linear programming problems
Zh. Vychisl. Mat. Mat. Fiz., 39:3 (1999), 431–445
-
Primal-dual Newton method for linear programming problems
Zh. Vychisl. Mat. Mat. Fiz., 39:1 (1999), 17–32
-
Dual barrier-projection and barrier-Newton methods for linear programming problems
Zh. Vychisl. Mat. Mat. Fiz., 36:7 (1996), 30–45
-
The use of Newton's method for linear programming
Zh. Vychisl. Mat. Mat. Fiz., 35:6 (1995), 850–866
-
Barrier-projective methods for nonlinear programming
Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994), 669–684
-
Exact auxiliary functions in optimization problems
Zh. Vychisl. Mat. Mat. Fiz., 30:1 (1990), 43–57
-
An augmented Lagrange function method for multicriterion optimization problems
Zh. Vychisl. Mat. Mat. Fiz., 28:11 (1988), 1603–1618
-
Method of feasible directions for solving problems of convex multicriterion optimization
Zh. Vychisl. Mat. Mat. Fiz., 27:6 (1987), 829–838
-
A method for the parametric representation of objective functions in conditional multicriterial optimization
Zh. Vychisl. Mat. Mat. Fiz., 26:2 (1986), 177–189
-
On some estimates of the penalty coefficient in methods of exact penalty functions
Zh. Vychisl. Mat. Mat. Fiz., 24:8 (1984), 1164–1171
-
A class of iterative methods of solution of convex programming problems
Zh. Vychisl. Mat. Mat. Fiz., 24:5 (1984), 665–676
-
Two modifications of the linearization method in nonlinear programming
Zh. Vychisl. Mat. Mat. Fiz., 23:2 (1983), 314–325
-
Modified Lagrangian functions in nonlinear programming
Zh. Vychisl. Mat. Mat. Fiz., 22:2 (1982), 296–308
-
On two classes of methods of solving nonlinear programming problems
Dokl. Akad. Nauk SSSR, 254:3 (1980), 531–534
-
Iterative methods for solving non-linear programming problems, using modified Lagrange functions
Zh. Vychisl. Mat. Mat. Fiz., 20:4 (1980), 874–888
-
A relaxation method for solving problems of non-linear programming
Zh. Vychisl. Mat. Mat. Fiz., 17:4 (1977), 890–904
-
An application of the method of Ljapunov functions to the study of the convergence of numerical methods
Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975), 101–112
-
Numerical methods of solving some operational research problems
Zh. Vychisl. Mat. Mat. Fiz., 13:3 (1973), 583–598
-
Letter to the editor: Concerning some publications on internal point methods
Zh. Vychisl. Mat. Mat. Fiz., 36:12 (1996), 161–162
© , 2024